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Abstract. Schema matching is a basic problem in many applications, their schemas become larger, further increasing
database application domains, such as data integration, Ehe number of matches to be performed. The level of effort
business, data warehousing, and semantic query processinig.at least linear in the number of matches to be performed,
In currentimplementations, schema matching is typically per-maybe worse than linear if one needs to evaluate each match in
formed manually, which has significant limitations. On the the context of other possible matches of the same elements. A
other hand, previous research papers have proposed mafgster and less labor-intensive integration approach is needed.
techniques to achieve a partial automation of the match opThis requires automated support for schema matching.
eration for specific application domains. We present a taxon-  To provide this automated support, we would like to see
omy that covers many of these existing approaches, and we generic, customizable implementation of Match that is us-
describe the approaches in some detail. In particular, we distinable across application areas. This would make it easier to
guish between schema-level and instance-level, element-levélild application-specific tools that include automatic schema
and structure-level, and language-based and constraint-basethtch. Such a generic implementation can also be a key com-
matchers. Based on our classification we review some preponent within a more comprehensive model management ap-
vious match implementations thereby indicating which partproach, such as the one proposed in [BHP0O, Be00, BR0O],
of the solution space they cover. We intend our taxonomy andvhere the mapping returned by a match operation may be
review of past work to be useful when comparing different ap-used as input to operations to merge schemas and compose
proaches to schema matching, when developing a new matamappings.

algorithm, and when implementing a schema matching com-  Fortunately, there is a lot of previous work on schema
ponent. matching developed in the context of schema translation and
hintegration, knowledge representation, machine learning, and
information retrieval. The main goals of this paper are to sur-
vey these past approaches and to present a taxonomy that ex-
plains their common features. We expect the survey to be help-
ful both to designers of new approaches and to users who need
1. Introduction to select from a library of approaches.

In the next section, we summarize some example applica-
A fundamental operation in the manipulation of schema in-tions of schema matching. Section 3 defines the match oper-
formation isMatch which takes two schemas as input and ator, and Section 4 describes a high-level architecture for im-
produces a mapping between elements of the two schemgsdementing it. Section 5 provides a classification of different
that correspond semantically to each other [LC94, MIR94,ways to perform Match automatically. This section illustrates
MZ98, PSU98, MWJ99, DDLO00]. Match plays a central role both the complexity of the problem and (at least part of) the
in numerous applications, such as web-oriented data integrasolution space. We use the classification in Sects. 6 through
tion, electronic commerce, schema integration, schema evd to organize our presentation of previously proposed tech-
lution and migration, application evolution, data warehous-niques and to explain how they may be applied in the overall
ing, database design, web site creation and management, aadchitecture. Section 9 is a literature review, which describes
component-based development. some integrated solutions and how they fitin our classification.
Currently, schema matching is typically performed man-Section 10 is the conclusion.

ually, perhaps supported by a graphical user interface. Obvi-

ously, manually specifying schema matches is a tedious, time-

consuming, error-prone, and therefore expensive process. This Application domains

is a growing problem given the rapidly increasing number of

web data sources and E-businesses to integrate. Moreover, & motivate the importance of schema matching, we summa-
systems become able to handle more complex databases aride its use in several database application domains.

Keywords: Schema matching — Schema integration — Grap
matching — Model management — Machine learning
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2.1. Schema integration To enable systems to exchange messages, application devel-
opers need to convert messages between the formats required
Most work on schema match has been motivated by schemby different trading partners.
integration, a problem that has been investigated since the Part of the message translation problem is translating be-
early 1980s: Given a set of independently developed schematyeen different message schemas. Message schemas may use
construct a global view [BLN86, EP90, SL90, PS98]. In an different names, somewhat different data types, and different
artificial intelligence setting, this is the problem of integrating ranges of allowable values. Fields are grouped into structures
independently developed ontologies into a single ontology. that also may differ between the two formats. For example,
Since the schemas are independently developed, they oftesne may be a flat structure that simply lists fields while an-
have different structure and terminology. This can obviouslyother may group related fields. Or both formats may use nested
occur when the schemas are from different domains, such astructures but may group fields in different combinations.
a real estate schema and property tax schema. However, it Translating between different message schemasiis, in part,
also occurs even if they model the same real world domaina schema matching problem. Today, application designers
just because they were developed by different people in difneed to specify manually how message formats are related. A
ferent real-world contexts. Thus, a first step in integrating thematch operation would reduce the amount of manual work by
schemas is to identify and characterize these interschema rgenerating a draft mapping between the two message schemas,
lationships. This is a process of schema matching. Once theyhich an application designer can subsequently validate and
are identified, matching elements can be unified under a comodify as needed.
herent, integrated schema or view. During this integration, or ~ Schema match may also be helpful to applications being
sometimes as a separate step, programs or queries are createsidered for the semantic web [BHLO1], such as mapping
that permit translation of data from the original schemas intomessages between autonomous agents or matching declarative
the integrated representation. mediator definitions.
A variation of the schema integration problem is to inte-
grate an independently developed schema with a given con-
ceptual schema. Again, this requires reconciling the structur@.4. Semantic query processing
and terminology of the two schemas, which involves schema
matching. Schema integration, data warehousing, and E-commerce are
all similar in that they involve the design-time analysis of
schemas to produce mappings and, possibly an integrated
2.2. Data warehouses schema. A somewhat different scenario is semantic query pro-
cessily — a run-time scenario where a user specifies the output
A variation of the schema integration problem that becameof a query (e.g., the SELECT clause in SQL), and the system
popular in the 1990s is that of integrating data sources intdigures out how to produce that output (e.g., by determining
a data warehouse. A data warehouse is a decision suppdiie FROM and WHERE clauses in SQL). The user’s speci-
database that is extracted from a set of data sources. The efieation is stated in terms of concepts familiar to her, which
traction process requires transforming data from the sourcenay not be the same as the names of elements specified in the
format into the warehouse format. As shown in [BR0O], the database schema. Therefore, in the first phase of processing
match operation is useful for designing transformations. Giverthe query, the system must map the user-specified concepts
a data source, one approach to creating appropriate transfonr the query output to schema elements. This too is a natural
mations is to start by finding those elements of the source thatpplication of the match operation.
are also present in the warehouse. This is a match operation. After mapping the query output to the schema elements,
After an initial mapping is created, the data warehouse dethe system must derive a qualification (e.g., a WHERE clause)
signer needs to examine the detailed semantics of each sourtieat gives the semantics of the mapping. Techniques for de-
element and create transformations that reconcile those seiving this qualification have been developed over the past 20
mantics with those of the target. years [MRSS82, KKFG84, WS90, RYACO00]. We expect that
Another approach to integrating a new data so®dsto  these techniques can be generalized to specify the semantics
reuse an existing source-to-warehouse transform&tiofV. of a mapping produced by the match operation. However, an
First, the common elements 8f andS are found (a match investigation of this hypothesis is beyond the scope of this
operation) and theS=-W is reused for those common ele- paper.
ments.

3. The match operator
2.3. E-commerce

To define the match operator, Match, we need to choose a
Inthe current decade, E-commerce has led to a new motivatiorepresentation for its input schemas and output mapping. We
for schema matching: message translation. Trading partnemsant to explore many approaches to Match. These approaches
frequently exchange messages that describe business trarepend a lot on the kinds of schema information they use and
actions. Usually, each trading partner uses its own messagww they interpret it. However, they depend hardly at all on
format. Message formats may differ in their syntax, such aghat information’s internal representation, except to the extent
EDI (electronic data interchange) structures, XML, or customthat it is expressive enough to represent the information of
data structures. They may also use different message schemasterest. Therefore, for the purposes of this paper, we define
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Table 1. Sample input schemas pair in= represents one mapping element of the mapping. For
example, the result of calling Match on the schemas of Table
Slelements S2elements 1 could be “Cust.C# Customer.CustID”, “Cust.CNan
Cust Customer Customer.Company”, and Cust.FirstName, Cust.LastNafne
C# CustiD =~ Customer.Contact”. A complete specification of the result
CName Company of the invocation of Match would also include the mapping ex-
FirstName Contact

pression of each element, thatis “Cust.C# = Customer.CustID",
“Cust.CName = Customer. Company”, and “Concatenate
(Cust.FirstName, Cust.LastName) = Customer.Contact”. In
what follows, when mapping expressions are involved, we
a schemao be simply aset of elementsonnected by some will explicitly mention them. Otherwise, we will simply use
structure =3
In practice, a particular representation must be chosen, Aswe will see, some implementations of Match are similar
such as an entity-relationship (ER) model, an object-orientedo join processing in relational databases, in that both Match
(O0) model, XML, or directed graphs. In each case, there isand Join are binary operations that determine pairs of corre-
a natural correspondence between the building blocks of theponding elements from their input operands. There are many
representation and the notions of elements and structure: entilfferences, of course. Match operates on metadata (schema
ties and relationships in ER models; objects and relationshipglements) and Join on data (rows of tables). Moreover, Match
in OO models; elements, subelements, and IDREFs in XML;is more complex than Join. Each element in the Join result
and nodes and edges in graphs. combines only one element of the first with one matching el-
We define a mapping to be a set mfpping elements ement of the second input, while an element in a match result
each of which indicates that certain elements of sch8ma can relate multiple elements from both inputs. Furthermore,
are mapped to certain element$§ia. Furthermore, each map- Join semantics is specified by a single comparison expression
ping element can haveraapping expressiowhich specifies  (e.g., an equality condition for natural join) that must hold
how theS1 and S2 elements are related. The mapping ex- for all matching input elements. By contrast, each element
pression may be directional, for example, a certain functionn a match result may have a different mapping expression.
from the S1 elements referenced by the mapping element toHence, the semantics of Match is less restricted than that of
theS2 elements referenced by the mapping element, or it mayoin and is more difficult to capture in a consistent way.
be non-directional, that is, a relation between a combination The similarity of Match and Join extends to OuterMatch
of elements ofS1 andS2. It may use simple relations over operations, which are useful counterparts to Match in much
scalars (e.g., =<), functions (e.g., addition or concatena- the same way that OuterJoin is a counterpart to Join. A right
tion), ER-style relationships (e.g., is-a, part-of), set-oriented(or left) OuterMatch ensures that every elemer$dfor S1)
relationships (e.g., overlaps, contains [LNE89]), or any otheris referenced by the mapping. A full OuterMatch ensures every
terms that are defined in the expression language being usedlement of botls1 andS2 are referenced by the mapping. By
For example, Table 1 shows two schen&k and S2 ensuring that every element of a schefia referenced in the
representing customer information. A mapping betw8dn  mapping returned by Match, the mapping can be more easily
and S2 could contain a mapping element relating Cust.C#composed with other mappings that refefStoExamples of
to Customer.CustID with the mapping expression “Cust.C#such compositions appear in [BR00], which introduced the
= Customer.CustID”. A mapping element with the expres-OuterMatch operation. Although the usage of OuterMatch in-
sion “Concatenate(Cust.FirstName, Cust.LastName) = Cusvolves some subtlety, its implementation is a straightforward
tomer.Contact” describes a mapping between$welements  extension of Match: given an algorithm for the match opera-
and oneS2 element. tion, OuterMatch can easily be computed by adding elements
We define the match operation to be a function that takego the match result that reference the otherwise non-referenced
two schemas$s1 andS2 as input and returns a mapping be- elements ofS1 or S2. We therefore do not consider Outer-
tween those two schemas as output, calledntiagch result ~ Match further in this paper.
Each mapping element of the match result specifies that certain
elements of schem&1 logically correspond to, i.e., match,
certain elements 082, where the semantics of this corre- 4. Architecture for generic match
spondence is expressed by the mapping element’'s mapping
expression. When reviewing and comparing approaches to Match, it helps
Unfortunately, the criteria used to match elementSdf  to have an implementation architecture in mind. We therefore
andS2 are based on heuristics that are not easily captured in describe a high-level architecture for a generic, customizable
precise mathematical way that can guide us in the implemenimplementation of Match.
tation of Match. Thus, we are left with the practical, though  Figure 1 illustrates the overall architecture. The clients are
mathematically unsatisfying, goal of producing a mapping thatschema-related applications and tools from different domains,
is consistent with heuristics that approximate our understandsuch as E-business, portals, and data warehousing. Each client
ing of what users consider to be a good match. uses the generic implementation of Match to automatically
Similar to previous work we focus mostly on match algo- determine matches between two input schemas. XML schema
rithms that return a mapping that does not include mappingditors, portal development kits, database modeling tools and
expressions. We therefore often represent a mapping as a simthe like may access libraries to select existing schemas, shown
larity relation,~, over the powersets &1 andS2, where each  in the lower left of Fig. 1. The implementation of Match may

LastName Phone
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Tool 1 Tool 2 Tool 3 (Data Tool 4 (Database

(Portal schemas) (E-business schemas) warehousing schemas) design schemas)

| Schema import/ export |

Generic Match
implementation

Internal schema ) . . .
representation Fig. 1. High-level architecture of generic Match

Table 2. Full vs partial structural match (example)

S1 elements S2 elements
Address CustomerAddress full structural match of
Street Street Address and CustomerAddress
City City
State USState
ZIP PostalCode
AccountOwner Customer partial structural match of AccountOwner and
Name Chame Customer
Address CAddress
Birthdate CPhone
TaxExempt

also use the libraries and other auxiliary information, such as An implementation of Match may use multiple match al-

dictionaries and thesauri, to help find matches. gorithms ormatchers This allows us to select the matchers
We assume that the generic implementation of Match repdepending on the application domain and schematypes. Given

resents the schemas to be matched in a uniform internal reghat we want to use multiple matchers we distinguish two sub-

resentation. This uniform representation significantly reduceproblems. First, there is the realization of individual matchers,

the complexity of Match by not having to deal with the large each of which computes a mapping based on a single match-

number of different (heterogeneous) representations oing criterion. Second, there is the combination of individ-

schemas. Tools that are tightly integrated with the frameworkual matchers, either by using multiple matching criteria (e.qg.,

can work directly on the internal representation. Other toolsname and type equality) within an integrategbrid matcher

need import/export programs to translate between their naer by combining multiple match results produced by different

tive schema representation (such as XML, SQL, or UML) andmatch algorithms within aomposite matcheFor individual

the internal representation. A semantics-preserving importematchers, we consider the following largely-orthogonal clas-

translates input schemas from their native representation intsification criteria:

mappings produced by the generic implementation of Match  jnstance data (i.e., data contents) or only schema-level in-

from the internal representation into the representation re-  formation.

quired by each tool. This allows the generic implementation o Element vs structure matchingnatch can be performed

of Match to operate exclusively on the internal representation.  for individual schema elements, such as attributes, or for

~Ingeneral, it is not possible to determine fully automat-  combinations of elements, such as complex schema struc-
ically all matches between two schemas, primarily because yres.

most schemas have some semantics that affects the match; Language Vs constrain matcher can use a linguistic-
ing criteria but is not formally expressed or often even docu-  pased approach (e.g., based on names and textual descrip-
mented. The imp|ementati0n Of I\/IatCh Should therefore Only tions Of Schema e|ements) ora Constraint_based approach
determinematch candidatesvhich the user can accept, reject (e.g., based on keys and relationships).
or change. Furthermore, the user should be able to specify, Matching cardinality:the overall match result may relate
matCheS fOI‘ e|ementS for Wh|Ch the SyStem was Unable to f|nd one or more e|ements Of one Schema to one or more e|e_
satisfactory match candidates. ments of the other, yielding four cases: 1:1, 1:n, n:1, n:m.
In addition, each mapping element may interrelate one
or more elements of the two schemas. Furthermore, there
5. Classification of schema matching approaches may be different match cardinalities at the instance level.
e Auxiliary information:most matchers rely not only on the
In this section we classify the major approaches to schema input schema$1 andS2 but also on auxiliary informa-
matching. Fig.2 shows part of our classification scheme to- tion, such as dictionaries, global schemas, previous match-
gether with some sample approaches. ing decisions, and user input.
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Schema Matching Approaches

/ \

Individual matcher approaches Combining matchers
Schema-only based Instance/contents-basedHybrid matchers Composite matchers
Element-level Structure-level Element-level Manual Automatic
/ \ | / \ composition composition
P Constraint- Constraint- s Constraint-
Linguistic Linguistic
9 based based 9 based

AN/ /NN N (e

- Match cardinality

- Auxiliary information used...
¢ Name similarity

« Description * Type S|m|Iar_|ty : Graph_ * IR techniques . ¢ Value pattern and
A « Key properties matching (word frequencies,
similarity Kev t ranges

. Global ey terms) Sample approaches
namespaces

Fig. 2. Classification of schema matching approaches

Note that our classification does not distinguish between dif-element of the first schema&lement-level matchindeter-
ferent types of schemas (relational, XML, object-oriented,mines the matching elements in the second input schema. In
etc.) and their internal representation, because algorithms de¢he simplest case, only elements at the finest level of granular-
pend mostly on the kind of information they exploit, not on ity are considered, which we call tl@omic level such as at-
its representation. tributes in an XML schema or columns in a relational schema.
In the following three sections, we discuss the main alter-For the schema fragments shown in Table 2, a sample atomic-
natives according to the above classification criteria. We dis{evel matchis “Address.ZIE CustomerAddress.PostalCode”
cuss schema-levelmatchingin Sect. 6, instance-level matchin@ecall that =" means “matches”).
in Sect. 7, and combinations of multiple matchers in Sect. 8. Structure-level matchingpn the other hand, refers to
matching combinations of elements that appear together in a
structure. Arange of cases is possible, depending on how com-
6. Schema-level matchers plete and precise a match of the structure is required. In the
eal case, all components of the structures in the two schemas

. . . i
Schema-level matchers only consider schema information, nqg"y match. Alternatively, only some of the components may

instance data. The available information includes the usua) required to match (i.e., a partial structural match). Exam-

grtzpetrtles Ofl stc_:her?]a ?Iements, tsul(fh. as n?me, destcr'pt'toﬁles of the two cases are shown in Table 2. The need for partial
ata type, relationship types (part-of, is-a, e C.')’ constralntS,, »iches sometimes arises because subschemas of different do-

and schema structure. In general, a matcher will find multlplemains are being compared. For example, in the second row of

match candidates. For each candidate, it is customary to estble 2 AccountOwner may come from a finance database
mate the degree of similarity by a normalized numeric valueWhile Cl'Jstomer comes from a sales database

in the range 0—1, in order to identify the best match candidates For more com :
. plex cases, the effectiveness of structure
(as in [PSU98, BCV99, DDLOO, CDDO1)). matching can be enhanced by considering known equivalence

We first discuss the main alternatives for match granularitypatterns which may be kept in a library. One simple pattern

and match cardinality. Then we cover linguistic and constraintis’shown in Fig. 3 relating two structures in an is-a hierarchy

based matchers. Finally, we outline approaches based on HTS a single structure. The subclass of the first schema is repre-

reuse of .auxmary data, such as previously defined SChemass‘ented by a Boolean attribute in the second schema. Another
and previous match results.

well-known pattern consists of two structures interconnected
by a referential relationship being equivalent to a single struc-
ture (essentially, the join of the two). We will see an example
of this in Sect. 6.4.

We distinguish two main alternatives for the granularity of ~ Element-levelmatching is notrestricted to the atomic level,
Match, element-level and structure-level matching. For eactbutmay also be appliedto coarser grairtegher (non-atomic)

6.1. Granularity of match (element-level vs structure-level)
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Employee requires considering the structural embedding of the schema
Employee elements and thus requires structure-level matching.

zr Table 3 shows examples of the four local cardinality cases
for individual mapping elements. In row 1, the match is 1:1.
Previous work has mostly concentrated on such 1:1 matches
because of the difficulty of automatically determining the map-
ping expressions in the other cases. When matching multiple
] o ~ S1 (or S2) elements at a time, we see that expressions are
level elements. Sample h|gher'|eve| granularltleS include f||eused to specify how these elements are related. For examp'e,
records, entities, classes, relational tables, and XML elementsgy, 3 explains how FirstName and LastName are extracted
In contrast to a_structure-le_vel matcher, such an e_Ieme_nt-Ie_vq}()m Name. Another example is row 4, which uses a SQL ex-
approach considers the higher-level element in isolation, igpression combining attributes from two tables. It corresponds
noring its substructure and components. For instance, the fagh an n:m relationship at the attribute level (f@&i attributes
that the elements "Address” and “CustomerAddress” in Ta-match twoS2 attributes) and an n:1 relationship at the struc-
ble 2 are likely to match can be derived by a name-basegyre |evel (two tables, B and P, 1 match one table, A, in
element-level matching without considering their underlying 52). The structure-level match ensures that the two A elements
components. are derived together in order to obtain correct book-publisher

Element-level matching can be implemented by algorithmsgmbinations.

similarto relationaljoinprocessing. Depending onthe matc_her The global cardinality cases with respect to all mapping
type, the match comparison can be based on such properties @&ments are largely orthogonal to the cases for individual
name, description, or data type of schema element. For eaghapping elements. For instance in the example of row 1, we
element of a schental, all elements of the other schel82  haye a global 1:1 match if no oth®L elements match Amount
with the same or similar value for the match property haveand no otheS2 elements match Price. On the other hand, if
to be identified. A general implementation, similar to nested-price inS1 also matches othe$2 elements (e.g., Cost as in

loop join processing, compares e&helementwitheacB2 oW 2) we obtain a global 1:n match in combination with local
element and determines a similarity metric per pair. Only theq:1 or 1:n matches.

combinations with a similarity value above a certain threshold  Note that in addition to the match cardinalities at the
are considered as match candidates. For special cases, M@jgnema level, there may be different match cardinalities at the
efficient implementations are possible. For example, as fofnstance level. For the first three examples in Table 3,3ihe
equi-joins, checking for equality of properties can be donejnstance is matched with or&2 instance (1:1 instance-level
using hashing or sort-merge. The join-like implementation ismatch). The example in row 4 corresponds to an n:1 instance-
properties at a time (e.g., name + data type). of P, into one of A. An example of n:m instance-level match-

ing is the association of individual sale instanceSafwith

different aggregate sale instances (per month, quarter, etc.) of
6.2. Match cardinality S2.

Most existing approaches map each element of one schema

An S1 (or S2) element can participate in zero, one or many to the element of the other schema with highest similarity. This
mapping elements of the match result between the two inputesults in local 1:1 matches and global 1:1 or 1:n mappings.
schemasS1 and S2. Moreover, within an individual map- More workis needed to explore more sophisticated criteria for
ping element, one or mor81 elements can match one or generating local and global n:1 and n:m mappings, which are
moreS2 elements. Thus, we have the usual relationship carcurrently hardly treated at all.
dinalities, namely 1:1 and the set-oriented cases 1:n, n:1, and
n:m, between matching elements both with respect to differ-
ent mapping elementglpbal cardinality) and with respectto  6.3. Linguistic approaches
an individual mapping elemeniogal cardinality). Element-
level matching is typically restricted to local cardinalities of Language-based or linguistic matchers use names and text
1:1, n:1, and 1:n. Obtaining n:m mapping elements usually(i-€., words or sentences) to find semantically similar schema

It

IsParttime: boolean

Parttime Employec

Fig. 3. Equivalence pattern

Table 3. Match cardinalities (Examples)

Local match cardinalities S1 element(s) S2 element(s) Matching expression
1. 1:1, element level Price Amount Amount = Price
2. n:1, element-level Price, Tax Cost Cost = Price*(1+Tax/100)
3. 1:n, element-level Name FirstName, FirstName, LastName =
LastName Extract (Name, ..)
4. n:1 structure-level B.Title, A.Book, A.Book, A.Publisher =
(n:m element-level) B.PuNo, A.Publisher Select B.Title, P.Name
P.PuNo, From B, P

P.Name Where B.PuNo=P.PuNo
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elements. We discuss two schema-level approaches, nanBusiness.Line. Such atechnique blurs the distinction between
matching and description matching. linguistic-based and structure-based techniques.
Name-based matching is possible for elements at different
levels of granularity. Furthermore, it can be applied across
Name matching levels, e.g., for a lower-level schema element to also consider
the names of the schema elements it belongs to (e.g., to find

Name-based matching matches schema elements with equé¥at author.name: AuthorName). This is similar to context-
or similar names. Similarity of names can be defined and mealased disambiguation of homonyms.

sured in various ways, including: Namg-basgd ma}tching i.s notlimitedtofinding 1:1 mat_ches.
. That is, it can identify multiple relevant matches for a given
e Equality of names. schema element. For example, it can match “phone” with both

An important subcase is the equality of names from the*home phone” and “office phone”.

same XML namespace, since this ensures that the same Name matching can be driven by element-level matching,

names indeed bear the same semantics. introduced in Sect. 6.1. In the case of synonyms and hyper-
e Equality of canonical name representations after stemnyms, the join-like processing involves a dictionary D as a

ming and other preprocessing. further input. If we think of a relation-like representation with

This is important to deal with special prefix/suffix sym- g1 (name, ...) /I one row peiS1 schema element

bols (e.g., CName- customer name, and EmpNG S2 (name, ...) /I one row peiS2 schema element
employee number)

e Equality of synonyms. D (namel, namez2,

(E.g., car automobile and make brand) similarity) /I similarity score for
« Equality of hypernyms. [namel, name2] between 0..1

(E.g., bookis-a publication and articlés-a publication  then a list of all match candidates can be generated by the
imply book= publication, article= publication, and book  following three-way join operation

= article)

o Similarity of names based on common substrings, editSelect S1.name, S2.name, D.similarity
distance, pronunciation, soundex (an encoding of namegrom S1, S2, D
based on how they sound rather than how they are spelledjivhere (S1.name = D.namel) and

etc. [BSO1]. (D.name2 = S2.name) and
(E.g., representedBs¥ representative, ShipTs Ship2) (D.similarity > threshold)
e User-provided name matches.
(E.g., reportsT@2 manager, issu& bug) This assumes that D contains all relevant pairs of the transi-

. . tive closure over similar names. For instance, if A-B-0.9 and
Exploiting synonyms and hypernyms requires the use of theg__ g are in D, then we would expect D also to contain B-

sauri or dictionaries. General natural language dictionaries\ g 9 c.B-0.8. and possibly A-G; C-A-o. Intuitively, we
may be useful, perhaps even multi-language dictionaries (€.gy,q |4 expect the similarity valueto be .9x .8 =.72, but this

English-German) to deal with input schemas of different 1an-yghengs on the type of similarity, the use of homonyms, and
guages. In addition, name matching can use domain- or enter:

. o . X : . erhaps other factors. For example, we might have deliver-
prise-specific dictionaries and is-a taxonomies containing co

O f sch | Ship-.9 and ship-boat-.9, but not deliver-beater any sim-
mon names, synonyms and descriptions of schema elementg, i vajue o. One approach to assigning different weights

abbreviations, etc. These specific dictionaries require a sulyy, gifterent types of similarity relationships is discussed in
stantial effort to be built up in a consistent way. The effort is [BHPY4].

well worth the investment, especially for schemas with rela-
tively flat structure where dictionaries provide the most valu-
able matching hints. Furthermore, tools are needed to enab
names to be accessed and (re-)used, such as within a sche
editor when defining new schemas. ) )

Homonyms are equal or similar names that refer to dif-Often, schemas contain comments in natural language to ex-

ferent elements. Clearly, homonyms can mislead a matchin§'ess the intended semantics of schema elements. These com-
algorithm. Homonyms may be part of natural language, Sucmer_lts can also be evaluated Imgwstlcall_y to detern_une the
as “stud” meaning a fastener or male horse, or may be Spe3|mllar|ty between schema elements. For instance, this would
cific to a domain, such as “line” meaning a line of businesshelp find that the following elements match, by a linguistic

or a line item (i.e., row) of an order. A name matcher cananalysis of the comments associated with each schema ele-
reduce the number of wrong match candidates by exploitin e_nt:

mismatch information supplied by users or dictionaries. AtS1: €mpn // employee name

least, the matcher can offer a warning of the potential ambiguS2: name // name of employee

ity due to multiple meanings of the name. A more automated_ . . . . . .
use of mismatch information may be possible by using Conchhls linguistic analysis could be as simple as extracting key-

text information, for example, to distinguish Order.Line from WOrds from the description which are used for synonym com-
parison, much like names. Or it could be as sophisticated as

! Xisahypernym of Y ifY is a kind of X. For instance, hypernyms using natural language understanding technology to look for
of “oak” include “tree” and “plant”. semantically equivalent expressions.

:[ﬁgscription matching
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Table 4. Constraint-based matching (example) with matching ancestors. However, a top-down algorithm can
be mislediftop-level schema structures are very different, even

S1 elements S2 elements if finer grained elements match well. By contrasbcatom-up
Employee Personnel algorithmcompares all combinations of fine grained elements,
EmpNo — int, primary key Pno - int, unique and therefore finds matches at this level even if intermediate
EmpName - varchar (50) Pname — string and higher level structures differ considerably.
DeptNo — |nt’ references Department Dept - st”ng Refel’l’lng baCk to Table 4, the pl’eVIOUS|y |dent|f|ed atom'C'
Salary - dec (15,2) Born - date level matches are not sufficient to correctly medio S2 be-

cause we actually need to joirBl.Employee and
Sl1.Department to obtainS2.Personnel . This can be
detected automatically by observing that components of

Birthdate — date

Department S2.Personnel match components of boB1.Employee
DeptNo —int, primary key and Sl1.Department and that S1.Employee and
DeptName — varchar (40) S1.Department areinterconnected by foreign kBgptNo

in Employee referencingDepartment . This allows us to
determine the correct n:m SQL-like match mapping

6.4. Constraint-based approaches S2.Personnel (Pno, Pname, Dept, born) ~

. . ' elect S1.Employee.EmpNo,
Schemas often contain constraints to define data types an% S1.Employee. EmpName,

valug ranges, uniqueness, optionality, reIa'uqnshlp types and S1.Department.DeptName,
cardinalities, etc. If both input schemas contain such informa- S1 Emolovee Birthdate
tion, it can be used by a matcher to determine the similarityF -=mployee.

L rom S1.Employee, Sl1.Department
of schema elements [LNE89]. For example, similarity can beWhere (S1.Employee.DeptNo
based on the equivalence of data types and domains, of key - S1D ployee.uep

" . ; ; . ) = .Department.DeptNo)
characteristics (e.g., unique, primary, foreign), of relationship
cardinality (e.g., 1:1 relationships), or of is-a relationships. Some inferencing was needed to know that the join should be

The implementation can often be performed as describe@dded. This inferencing can be done by mapping the problem
in Sect. 6.1 with a join-like element-level matching, now us- into one of determining the required joins in the universal
ing the data types, structures, and constraints in the comparelation model [KKFG84].
isons. Equivalent data types and constraint names (e.g., string
= varchar, primary ke unigue) can be provided by a special
synonym table. 6.5. Reusing schema and mapping information

In the example in Table 4, the type and key information
suggestthaBorn matche®irthdate  andPnomatchesei- We have already discussed the use of auxiliary information in
therEmpNoor DeptNo . The remaining2 elementname  addition to the input schemas, such as dictionaries, thesauri,
and Dept are strings and thus likely matdBmpNameor and user-provided match or mismatch information. Another
DeptName. way to use auxiliary information to improve the effective-

As the example illustrates, the use of constraint infor-ness of Match is to support and exploit the reuse of com-
mation alone often leads to imperfect n:m matches (matchmon schema components and previously determined map-
clusters), as there may be several elements in a schema witlings. Reuse-oriented approaches are promising, since we ex-
comparable constraints. Still, the approach helps to limit thepect that many schemas need to be matched and that schemas
number of match candidates and may be combined with otheoften are very similar to each other and to previously matched
matchers (e.g., name matchers). schemas. For example, in E-commerce, substructures often

Certain structural information can be interpreted as con+epeat within different message formats (e.g., address fields
straints, such as intra-schema references (e.g., foreign keyand name fields).
and adjacency-related information (e.g., part-of relationships). The use of names from XML namespaces or specific dic-
Such information tells us which elements belong to the sameionaries is already reuse-oriented. A more general approach is
higher-level schema element, transitively through multi-levelto reuse not only globally defined names but also entire schema
structures. Such constraints can be interpreted as structuréggments, including such features as data types, keys, and
andtherefore be exploited using structure matching approachesnstraints. This is especially rewarding for frequently used
Such a matching can consider the topology of structures asntities, such as address, customer, employee, purchase or-
well as different element types (e.g., for attributes, tables Mder, and invoice, which should be defined and maintained in a
elements, or domains) and possibly different types of strucschemallibrary. While itis unlikely that the whole world agrees
tural connections (e.g., part-of or usage relationships). on such schemas, they can be specified for an enterprise, its

Many schema structures are hierarchical, based on sonteading partners, relevant standards bodies, or similar orga-
form of containment relationship. When performing a matchnizations to reduce the degree of variability. Schema editors
based on hierarchical structures, an algorithm can traverse ttehould access these libraries to encourage the reuse of pre-
structure either top-down or bottom-upt@p-down algorithm  defined schema fragments and defined terms, perhaps with a
is usually less expensive than bottom-up, because matchesatzard that observes when a new schema definition is similar
a high level of the schema structure restrict the choices fobut notidentical to one in a library. The elements reused in this
matching finer grained structure only to those combinationsvay should contain the ID of their originating library, e.g., via
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Schema S1 Schema S Schema 52
Purchase-order2 Purchase-order—————— POrder
Product Product » Article
BillTo BillTo / Payee
Name Name /_/yBil]Address
Address Address Recipient
ShipTo ShipTo /ShipAddreSS
Name Name /
Address Address
ContactPhone Contact
N
ame Fig. 4. Scenario for reuse of an existing mapping
Address

XML namespaces, so the implementation of Match can easilyan approximate schema graph [WYWO0O0] may be constructed
identify and match schema fragments and names that comautomatically from XML documents). Even when substan-
from the same library. tial schema information is available, the use of instance-level
A further generic approach is to reuse existing mappingsmatching can be valuable to uncover incorrect interpretations
We want to reuse previously determined element-levelof schema information. For example, it can help disambiguate
matches, which may simply be added to the thesaurus. We aldmetween equally plausible schema-level matches by choosing
want to reuse entire structures, which is useful when matchingo match the elements whose instances are more similar.
different but similar schemas to the same destination schema, Most of the approaches discussed previously for schema-
as may occur when integrating new sources into a data wardevel matching can be applied to instance-level matching.
house or digital library. For instance, this is useful if a schemaHowever, some are especially applicable here. For example:
S1 has to be mapped to a sche8fto which another schema
S has already been mappedSif is more similar tdS than to
S2, this can simplify the automatic generation of match candi- ~ formation retrieval techniques is the preferred approach,
dates by reusing matches from the existing result of M&gch( e.g., by extracting keywords and themes based on the rel-
S2), although some care is needed since matches are some- ative frequencies of words and combinations of words,

times not transitive. Among other things, this allows the reuse ~ €tc. For example, in Table 4, looking at thgept,
of manually specified matches. DeptName andEmpNameinstances we may conclude

An example for such a re-use is shown in Fig.4 for pur-  thatDeptName is a better match candidate oept than
chase order schemas. We already have the match result be- EmpName
tweenS andS2, illustrated by the arrows. The new purchase ¢ For more structured data, such as numerical and string
order schem&1 is very similar toS. Thus, for every element elements, we can apply@nstraint-based characteriza-

o Fortext elementslnguistic characterizatiotased onin-

or structure ofS1 that has a corresponding element or fully
matching structure i$, we can use the existing mapping be-
tweenS andS2. In this (ideal) case, we can reuse all matches;
sinceS2 is fully covered, no additional match work has to be
done.

tion, such as numerical value ranges and averages or char-
acter patterns. For instance, this may allow recognizing
phone numbers, zip codes, geographical names, addresses,
ISBNs, SSNs, date entries, or money-related entries (e.g.,
based on currency symbols). In Table 4, instance informa-

tion may help to makEmpNahe primary match candidate
for Pno, e.g., based on similar value ranges as opposed to
the value range fabeptNo .

Such a reuse of previous matches may only be possible for
some part of a new schema. Hence a major problem is to deter-
mine which part of a new schema is similar to some part of a
previously matched an—a match problem in itself. Moreover, ) ] o ) )
similarity values determined for a previous match task may' e main benefit of evaluating instances is a precise char-
depend on the application domain so that their reuse Shou@ctenzaﬂqn qf the actual contents_ of schema elements. This
be restricted to related applications. For example, Salary angharacterization can be employed in atleast two ways. One ap-
Income may be considered identical in a payroll applicationproaCh is to use the characterlzatlc_)n to enhance schema-level
but not in a tax reporting application. To our knowledge thesgMatchers. For instance, a constraint-based matcher can then

reuse issues have not yet been addressed but deserve furtfgre accurately determine corresponding data types based,
work. for example, on the discovered value ranges and character

pattern, thereby improving the effectiveness of Match. This
requires characterizing the content of both input schemas and
then matching the schemas with each other.

A second approach is to perform instance-level matching
Instance-level data can give important insight into the content®n its own. First, the instances 8flL are evaluated to char-
and meaning of schema elements. This is especially true wheacterize the content 31 elements. Then, th82 instances
useful schema information is limited, as is often the case forare matched one-by-one against the characterizatioS4 of
semistructured data. In the extreme case, no schema is giveelements. The per-instance match results need to be merged
but a schema can be constructed from instance data eith@nd abstracted to the schema level, to generate a ranked list
manually or automatically (e.g., a “data guide” [GW97] or of match candidates i1 for each (schema-level) element in

7. Instance-level approaches
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S2. Various approaches have been proposed to perform sudlypically uses a hard-wired combination of particular match-

an instance matching or classification, such as rules, neurahg techniques that are executed simultaneously or in a fixed
networks, and machine learning techniques [BM01, DDL0O,order. By contrast, a composite matcher allows us to se-
DDHO01, LC94, LCO00, LCLO0OQ]. lect from a repertoire of modular matchers based, for exam-

Instance-level matching can also be performed by utilizingple, on application domain or schema languages (e.g., differ-
auxiliary information, e.g., previous mappings obtained froment approaches can be used for structured vs semi-structured
matching different schemas. This approach is especially helpschemas). For example, one could use machine learning to
ful for matching text elements by providing match candidatescombine independent matchers, as in [DDHO1] for instance-
forindividual keywords. For instance, a previous analysis maylevel matchers and in [EJX01] for a combination of instance-
have revealed that the keyword “Microsoft” frequently occurslevel and schema-level matchers. Moreover, a composite
for schema elements “CompanyName”, “Manufacturer”, etc.matcher should allow a flexible ordering of matchers so that
For a new match task, if aB2 schema element X frequently they are either executed simultaneously or sequentially. In the
contains the term “Microsoft” this can be used to generateatter case, the match result of a first matcher is consumed and
“CompanyName” inS1 as a match candidate for X, even if extended by a second matcher to achieve an iterative improve-
“Microsoft” does not often occur in the instancesSH. ment of the match result.

The above approaches for instance-level matching primar- ~ Selection of matchers, and determining their execution or-
ily work for finding element-level matches. Finding matches der and the combination of independently determined match
for sets of schema elements or structures would require charesults can be done either automatically by the implementa-
acterizing the content of these sets. Obviously, the main probtion of Match itself or its clients (e.g., tools), or manually by a
lem is the explosion of the number of possible combinationshuman user. An automatic approach can reduce the number of
of schema elements for which the instances would have to baser interactions, but it is difficult to achieve a generic solution
evaluated. thatis adaptable to different application domains (although the

approach could be controlled by tuning parameters). Alterna-

tively, a user can directly select the matchers to be executed,
8. Combining different matchers their execution order and how to combine their results. Such

a manual approach is easier to implement and leaves more
We have reviewed several types of matchers and many difeontrol to the user. As discussed in Sect. 4, user interaction is
ferent variations. Each utilizes different information and hasnecessary in any case because the implementation of Match
thus different applicability and value for a given match task.can only determine match candidates which a user can accept,
Therefore, a matcher that uses just one approach is unlikelseject or change.
to achieve as many good match candidates as one that com- To deal with complex match tasks, the implementation of
bines several approaches. This can be done in two ways: ldatch should support an iterative development of match re-
hybrid matcher that integrates multiple matching criteria andsults with multiple user interactions. With a composite match
composite matchers that combine the results of independentlgpproach supporting the sequential execution of matchers,
executed matchers. Combining multiple matching approachesser-supplied matches can be considered as a special matcher
also opens the possibility to evaluate them simultaneously othat provides input for automatic matchers. Still, the matchers
in a specific order. should be aware of user-provided match input and not change

Hybrid matchersdirectly combine several matching ap- it but focus on the unmatched parts of the input schemas.
proaches to determine match candidates based on multiple
criteria or information sources (e.g., by using name match-
ing with namespaces and thesauri combined with data type
compatibility). They should provide better match candidates9. Sample approaches from the literature
plus better performance than the separate execution of multiple
matchers. Effectiveness may be improved because poor mat¢hl. Prototype schema matchers
candidates matching only one of several criteria can be filtered
out early, and because complex matches requiring the joinin Table 5 we show how seven published prototype implemen-
consideration of multiple criteria can be solved (e.g., the use ofations fit the classification criteria introduced in Sect.5. The
keys, data types and names in Table 4). Structure-level matchable thus indicates which part of the solution space is cov-
ing also benefits from being combined with other approachegred by which implementations, thereby supporting a compar-
such as name matching. One way to combine structure- witlison of the approaches. It also specifies the supported schema
element-level matching is to use one algorithm to generate #ypes, the internal metadata representation format, the tasks to
partial mapping and the other to complete the mapping. be performed manually, and the application domain. We thus

A hybrid matcher can offer better performance than the ex4indicate the suitability of the approaches with respect to key
ecution of multiple matchers by reducing the number of passesequirements, in particular degree of automation (dependence
over the schema. For instance, with element-level matchingn manual input) and genericity with respect to the different
hybrid matchers can test multiple criteria at atime on €&&@h application domains and schema languages. The achievable
element before continuing with the neS® element. matching accuracy is related to the degree to which the solu-

On the other hand, one can useanposite matchehat  tion spectrum is covered.
combines the results of several independently executed match- The table shows that all systems support multiple match-
ers, including hybrid matchers. This ability to combine match-ing criteria, six in the form of a hybrid matcher and only one,
ers is more flexible than hybrid matchers. A hybrid matcherLSD, by a composite match approach. A flexible ordering of
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Table 5. Characteristics of proposed schema match approaches

)

i

results

Semint LSD SKAT TranScm DIKE ARTEMIS CUPID
[LC94, [DDLOO, [MWJ99, [MZ98] [PSU98a,b, |[CDDO1, [MBRO1]
LCOo, DDHO01] MWKO0] PSTU99] BCC*00]
LCLOO]
Schema types relational, XML XML, IDL, SGML, 00 |ER relational, OO, XML, rela-
files text ER tional
Metadata representation | unspecified | XML schema| graph-based | labeled graph graph hybrid extended ER
(attribute- trees 00 data relational / OO
based) model data model
Match granularity element- element and | element/ element-level element/ element/ element ang
level: structure- structure- structure- structure- structure-
attributes level level: level: level: level
(attribute attributes / entities / entities /
clusters) classes relationships /| relationships /
attributes attributes
Match cardinality 11 11 I:landn:l [1:1 11 11 1:1and n:1
Schema- | Name-based |- name name name name equality} name equality] name
level equality / equality; equality; synonyms; synonyms; equality,
match synonyms | synonyms; |synonyms; |hypernyms |hypernyms |synonyms,
homonyms; | homonyms; hypernyms,
hypernyms | hypernyms homonyms,
abbreviations
Constraint- several - is-a is-a domain domain data type an
based criteria: data (inclusion); | (inclusion); | compatibility | compatibility. | domain
type, length, relationship | relationship In MOMIS, compatibility,
key info, ... cardinalities | cardinalities uses keys, referential
foreign keys, | constraints
is-a,
aggregation
Structure matcht- XML similarity similarity matching of | matching of | matching
ing classifier for | w.r.t. w.r.t. neighborhood | neighborhood | subtrees,
matching “related” “related” weighted
non-leaf elements elements by leaves
elements
[DDHO1]
Instance- | Text-oriented |- Whirl - - - - -
level [Co98],
matchers Bayesian
learners
Constraint- character/ |listofvalid |- - - - -
oriented numerical domain
data pattern, | values
value
distribution,
averages
Reuse/auxiliary informa- |- comparison | reuse of - provision of | thesauri thesauri,
tion used with training | general some glossaries
matches; matching synonyms +
lookup for rules inclusions
valid domain with similarity
values probabilities
Combination of matchers | hybrid composite | hybrid hybrid hybrid hybrid hybrid
matcher with matchers;
automatic fixed order of
combination matchers
of matcher




E. Rahm, P.A. Bernstein: A survey of approaches to automatic schema matching 345

Table 5. (continued)

Semint LSD [DDL0OO, |SKAT TranScm DIKE ARTEMIS CUPID
[LC94, DDHO01] [MWJ99, [MZ98] [PSU98a,b, |[CDDO1, [MBRO1]
LCO0, MWKO00] PSTU99] BCC*00]
LCLOO]
Manual work / user input selection of |user-supplied |match/ resolving resolving user can user can ad-
match criterig matches for mismatch multiple structural adjust just threshold
(optional); training sourcesrules + matches, conflicts weights in weights
selection of | user can specify iterative adding new | (preprocess- | match
matching tuning refinement | matching ing) calculations
attributes parameters and rules
from attribute| integrity
clusters constraints to
guide selection
of match
candidates
[DDHO1]
Application area data data integration| ontology data schema schema data translaf
integration | with pre-defined composition |translation |integration |integration |tion, but in-
global schema | for data tended to be
integration / generic
interoperabil-
ity
Remarks neural “algorithms” | rules algorithms to| also
networks; C implicitly implemented| calculate new embedded in
implementa- represented | in Java synonyms, |the MOMIS
tion by rules homonyms, | mediator,
similarity with
metrics extensions

differentmatchers, as discussedin Sect. 8, is notyet supportedtraints use the information available from the catalog of arela-
Most systems provide both structure-level and element-levetional DBMS. Instance datais used to enhance this information
matching, in particular name and constraint-based matchindyy providing actual value distributions, numerical averages,
However, only two of the seven systems consider instancetc. For each criterion, the system uses a function to map each
data and all systems focus on (local) 1:1 matches (two syspossible value onto the interval [0..1]. Using these functions,
tems support global n:1 matches). Most prototypes have beeSemIintdetermines anatch signaturdor each attribute con-
developed with a specific application domain in mind, mostly sisting of a value in the interval [0..1] for N matching criteria
data and schema integration, while Cupid strives for generafeither all or a selected subset of the supported criteria). Since
applicability. Most systems support multiple schema typessignatures correspond to points in the N-dimensional space,
while LSD is limited to XML and DIKE to ER sources. All  the Euclidian distance between signatures can be used as a
systems allow the user to validate generated match results (nateasure of the degree of similarity and thus for determining
shown in the table) and require additional manual work to in-an ordered list of match candidates.
strument the system, e.g., by providing prior match knowledge  In its main approach, Semint uses neural networks to de-
or tuning parameters such as similarity thresholds. The maittermine match candidates. This approach requires similar at-
forms of auxiliary information and reuse support is the pro-tributes of the first input schema (e.g., foreign and primary
vision of thesauri and glossaries and specification of specifikeys) to be clustered together. Clustering is automatic by as-
match knowledge. Reuse of previous match results is not yesigning all attributes with a distance below a threshold value
supported. to the same cluster. The neural network is trained with the
In this section, we discuss some specific features of thesignatures of the cluster centers. The signatures of attributes
seven approaches. In Sect. 9.2, we briefly highlight some adrom the second schema are then fed into the neural network
ditional schemes. Most of them offer less support with respecto determine the best matching attribute cluster from the first
to automatic matching and have thus not been included in Taschema. Based on their experiments the authors found that
ble 5. the straightforward match approach based on Euclidian dis-
tance does well on finding almostidentical attributes, while the
neural network is better at identifying less similar attributes
Semint (Northwestern Univ.) that matcB. However, the neural network approach has sub-

The Semint match prototype [LC94, LCOO0, LCLOQ] creates a 2 To evaluate the effectiveness of a match approach, the authors use
mapping between individual attributes of two schemas (i.e., itghe IR metrics recall and precisidRecallindicates which percentage
match cardinality is 1:1). It exploits up to 15 constraint-basedof all matches in the schemas are correctly determiReecision

and 5 content-based matching criteria. The schema-level conndicates the fraction of all determined matches that are correct.



346 E. Rahm, P.A. Bernstein: A survey of approaches to automatic schema matching

stantial performance problems for larger schemas accordinbierarchies, but leaves open the details of what has been im-
to [CHR97]. To improve efficiency, the approach identifies a plemented.
match only to attribute clusters leaving it to the user to select SKAT is used within the ONION architecture for ontology
the matching attributes from the cluster. integration [MWKO0O]. In ONION, ontologies are transformed
Semint represents a powerful and flexible approach tdnto a graph-based object-oriented database model. Matching
hybrid matching, since multiple match criteria can be se-rules between ontologies are used to construct an “articulation
lected and evaluated together. This is in contrast to otheontology” which covers the “intersection” of source ontolo-
hybrid matchers using several criteria in a hard-wired fash-gies. Matching is based heavily on is-a relationships between
ion®. Semint does not support name-based matching or grapthe articulation ontology and source ontologies. The articula-
matching for which it may be difficult to determine a useful tion ontology is to be used for queries and for adding more
mapping to the [0..1] interval. sources.

LSD (Univ. of Washington) TransScm (Tel Aviv Univ.)

The LSD (Learning Source Descriptions) system uses!Nne TranScm prototype [MZ98] uses schema matching to de-
machine-learning techniques to match a new data sourcBve an automatic data translatlon_between schema instances.
against a previously determined global schema, producing §'Put schemas are transformed into labeled graphs, which
1:1 atomic-level mapping [DDLOO, DDHO1]. It represents a is the internal schema representation. Edges in the schema
composite match scheme with an automatic combination offfaphs represent component relationships. All other schema
match results. In addition to a name matcher they use sever#formation (name, optionality, #children, etc.) is represented
instance-level matchers (learners) that are trained during a prés properties of the nodes. The matching is performed node
processing step. Given a user-supplied mapping from a datBy node (element-level, 1:1) starting at the top and presumes
source to the global schema, the preprocessing step looks @thigh degree of similarity between the schemas. There are
instances from that data source to train the learner, thereby digeveral matchers which are checked in a fixed order. Each
covering characteristic instance patterns and matching rulegnatcher is a “rule” implemented in Java. They require that the
These patterns and rules can then be applied to match oth&atch is determined by exactly one matcher per node pair. If
data sources to the global schema. Given a new data sourcd@® match is found or if a matcher determines multiple match
each matcher determines a list of match candidates. candidates, user intervention is required, e.g., to provide a new

A global matcher that uses the same machine-learningule (matcher) or to select a match candidate. The matchers
technology is used to merge the lists into a combined list oftypically consider multiple criteria and can thus represent hy-
match candidates for each schema element. It too is trained d?fid approaches. For example, one of the matchers tests the
schemas for which a user-supplied mapping is known, therebj@ame properties and the number of children. Node matching
learning how much weight to give to each component matchefcan be made dependent on a partial or full match of the nodes’
New component matchers can be added to improve the glob&lescendents.
matcher’s accuracy.

Although the approach is primarily instance-oriented, it ] ) . ) ]
can exploit schema information too. A learner can take self- DIKE (Univ. of Reggio Calabria, Univ. of Calabria)
describing input, such as XML, and make its matching deci-
sions by focusing on the schema tags while ignoring the datdh [PSU98a, PSTU99], Palopoli et al. propose algorithms
instance values. LSD has also been extended to consider usé@- automatically determine synonym and inclusion (is-a, hy-
supplied domain constraints on the global schema to eliminat@ernym) relationships between objects of different entity-

some of the previously determined match candidates for imrelationship schemas. The algorithms are based on a set of
proving match accuracy [DDHO1]. user-specified synonym, homonym, and inclusion properties

that include a numerical “plausibility factor” (between 0 and

1) about the certainty that the relationship is expected to
SKAT (Stanford Univ.) hold. In order to (probabilistically) derive new synonyms and

homonyms and the associated plausibility factors, the authors

; - - perform a pairwise comparison of objects in the input schemas
The SKAT (Semantic Knowledge Articulation Tool) prototype by considering the similarity properties of their “related ob-

2:1?:’ rsn aatcrrlﬂaes_%aest\?vde :np‘t)vrv%aggté?‘);?eg'_(Esigrt]%r:]n?s(;a[lll\%vs%%hects" (i.e., their attributes and the is-a and other relationships
c]he objects participate in).

Rules are formulated in first-order logic to express match an In [PSU98b], the focus is to find pairs of objects in two

mismatch relationships and methods are defined to derive ne\évchemas that are similar, in the sense that they have the same

matches. The user has to initially provide application-specific ttributes and relationships, but are of different “types,” where

match and mismatch relationships and then approve or reje . . X o
generated matches. The descrigtion in [MWJ%%] deals w]ithypee {entity, attribute, relationship The similarity of two

- : .. Qbjects is a value in the range [0,1]. If the similarity exceeds
name matching and simple structural matches based on 'S%given threshold, they regard the objects as matching, and

% According to our characterization in Sect. 8, Semint s not a com-therefore regard a type conflict as significant. Thus, schema
posite matcher since it does not combine independently calculatethatching is the main step of their algorithm. For a given pair
match results. of objects g and @ being compared, objects related toamd
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0, contribute to the degree of similarity of @and @ with a  and then calculates a linguistic similarity coefficient between
weight that is inversely proportional to their distance from o data-type- and linguistic-content-compatible pairs of names
and @, where distance is the minimum number of many-to- based on substring matching and auxiliary sources. The second
many relationships on any path from to 0. Thus, objects phase transforms the original schema into a tree and then does
that are closely related to @and g (e.g., their attributes and a bottom-up structure matching, resulting in a structural sim-
objects they directly reference) count more heavily than thosdarity between pairs of element. This transformation encodes
that are reachable only via paths of relationships. referential constraints into structures that can be matched just
The above algorithms are embodied in the DIKE system|ike other structures (making Cupid constraint-based). The
described in [PTUOO, Ur99]. Related algorithms by the samesimilarity of two elements at the root of structures is based
authors are in [TUOO, RTUO1]. on their linguistic similarity and the similarity of their leaf
sets. If the similarity exceeds a threshold, then their leaf set
] ) ] . similarity is incremented. The focus on leaf sets is based on
ARTEMIS (Univ. of Milano, Univ. of Brescia) & MOMIS  the assumption that much of the information content is rep-
(Univ. of Modena and Reggio Emilia) resented in leaves and that leaves have less variation between

. . . .. schemas than internal structure. Phase two concludes by cal-
ARTEMIS is a schemaintegration tool [CDDO01, CD99]. It first : : L o
computes “affinities” in the range 0 to 1 between attributes culating a weighted mean of linguistic and structural similarity

which is a match-like step. It then completes the schema in_of pairs of elements. The third phase uses that weighted mean

: : ; o tp decide on a mapping. This phase is regarded as application
tegration by clustering attributes based on those affinities an ependent and not emphasized in the algorithm.
then constructing views based on the clusters.

: . . Experiments were run to compare Cupid to DIKE and
The algorithm operates on a hybrid relational-00 rnOdeIMOMIS on several schema examples. Cupid performed some-

th_at includes the name, data types,_and cardinalities of at; hat better overall. However, the more interesting results were
tributes and target object types of attributes that refer to othe(n the value of particular features of each algorithm on partic-

objects. It computes matches by a weighted sum of name and, - <o ots of the examples, which are too detailed to sum-
data type affinity and structural affinity. Name affinity is based marize here

on generic and domain-specific thesauri, where each associ-

ation of two names is a synonym, hypernym, or general re-

lationship, with a fixed affinity for each type of association. 9.2. Related prototypes

Data type affinity is based on a generic table of data type com-

patibilities. Structural affinity of two entities is based on the This section describes five other prototypes that offer func-

similarity of relationships emanating from those entities.  tionality that is related to the schema matching approaches
ARTEMIS is used as a component of a heterogeneougliscussed in this paper.

database mediator, called MOMIS (Mediator envirOment for

Multiple Information Sources) [BCV99, BCC*00, BCVBO01]. . .

MOMIS integrates independently developed schemas into aC“O (1BM Almaden and Univ. of Toronto)

virtual global schema on the basis of a reference objectThe Clio tool under development at IBM Research in Al-

based data model, which it uses to represent relational, objecinaden aims at a semi-automatic (user-assisted) creation of

oriented and semi-structured source schemas. MOMIS rematch mappings between a given target schema and a new

lies on ARTEMIS, the lexical system WordNet, and the data source schema. It consists of a set of Schema Readers,

description-logic-based inference tool ODB-Tools to producewhich read a schema and translate it into an internal represen-

an integrated virtual schema. It also offers a query processagation; a Correspondence Engine (CE), which is used to iden-

(with optimization) to query the heterogeneous data sourcestify matching parts of the schemas or databases; and a Map-

ping Generator, which generates view definitions to map data

in the source schemainto data in the target schema [HMNT99,

Mi01]. The correspondence engine makes use of n:m element-

Cupid is a hybrid matcher based on both element- andevel matches obtained from a knowledge-base or entered by

structure-level matching [MBRO1]. Itis intended to be generic & USer through a graphical user interface. In [MHHOO], Miller

across data models and has been applied to XML and rel£! & Present an algorithm for deriving a mapping between

tional examples. It uses auxiliary information sources for syn-tn€ target and source, given a set of element and substruc-

onyms, abbreviations, and acronyms. Like DIKE, each entr)}“re matches and matc_h expressions. It selects enough of the
in these auxiliary sources include a plausibility factor in the Ma{ches to coveramaximal setof columns ofthe targetschema

[0, 1] range. Unlike DIKE, Cupid can exploit entries that are and uses constraint reasoning to suggest join clauses to tie to-
ordinary words (e.g., Invoice is a synonym of Bill), without gether components of the source schema. [YMHFO1] proposes

requiring them to exactly match compound names of elementl1€ Use of sample data instances for the input schemas to in-

(e.g., InvoiceTo or billaddress). teractively guide the construction of a mapping query and to
The algorithm has three phases. The first phase doe¥eMfy its correctness.

linguistic element-level matching and categorizes elements

based on names, data types, and domains (making Cupid hsimjarity flooding (Stanford Univ. and Univ. of Leipzig)

brid). It parses compound element names into tokens based

on delimiters (e.g., Produtb becomeq Product, ID}), cate-  In [MGRO02], Melnik et al. present a graph matching algo-

gorizes them based on their data types and linguistic contentjthm called Similarity Flooding (SF) and explore its usability

Cupid (Microsoft Research)
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for schema matching. The approach converts schemas into difree matching (NYU)

rected labeled graphs and uses fixpoint computation to deter-

mine the matches between corresponding nodes of the graphéhang and Shasha developed an algorithm to find a mapping
It produces a 1:1 local, m:n global mapping between schem&etween two labeled trees [ZS89, ZSW92, ZS97], which they
elements. The SF algorithm is implemented as one of the opefater implemented in a system for approximate tree matching
ators in a prototype of a generic schema manipulation tool. ITWZJS94]. This is a purely structural match, with no notion
addition to the structural SF matcher the tool supports opera®f synonym or hypernym. However, it can cope with name
tors such as a name matcher, schema converters, and filters tHatsmatches by treating “rename” as one of the transforma-
can be combined within scripts. A typical match script startstions that can map one tree into the other. Implementations
with converting the two input schemas into the internal graphare available at [ZSWOQ].

representation. Then a name matcher is used to suggest an ini- Thereis, of course, alarge literature on graph isomorphism
tial element-level mapping which is fed to the structural SFWhich could be useful. An investigation of its relevance to the
matcher. In the last step, various filters are applied to seledinore specific problem of schema matchingis beyond the scope
relevant subsets of match results produced by the structurdf this paper.

matcher. The tool accepts several input formats, in particular

SQL DDL, XML, and RDF. .
10. Conclusion

Schema matching is a basic problem in many database appli-
Delta (MITRE) cation domains, such as heterogeneous database integration,
E-commerce, data warehousing, and semantic query process-
ing. Inthis paper, we proposed a taxonomy that covers many of
Delta represents a simple approach for determining attributéhe existing approaches and we described these approaches in
correspondences utilizing attribute descriptions [BHFW95,some detail. In particular, we distinguished between schema-
CHR97]. All available metadata about an attribute (e.g., textand instance-level, element- and structure-level, and language-
description, attribute name, and type information) is groupedand constraint-based matchers and discussed the combination
and converted into a simple text string, which is presented asf multiple matchers. We used the taxonomy to characterize
a documento a full-text information retrieval tool. The IR and compare a variety of previous match implementations.
tool can interpret such a document as a query. Documents dle hope that the taxonomy will be useful to programmers
another schema with matching attributes are determined andtho need to implement a match algorithm and to researchers
ranked. Selection of the matches from the result list is leftlooking to develop more effective and comprehensive schema
to the user. The approach is easy to implement but dependsatching algorithms. For instance, more attention should be
on the availability and expressiveness of text descriptions fogiven to the utilization of instance-level information and reuse
attributes. [CHR97] compares experimental match results obepportunities to perform Match.
tained with Delta with those obtained with the SemInttooland  Pastwork on schema matching has mostly been done inthe
proposes to combine the two approaches, which would resultontext of a particular application domain. Since the problem
in a composite matcher. is so fundamental, we believe the field would benefit from
treating it as an independent problem, as we have begun doing
here. In the future, we would like to see quantitative work on
] the relative performance and accuracy of different approaches.
Tess (Univ. of Massachusetts, Amherst) Such results could tell us which of the existing approaches
dominate the others and could help identify weaknesses in

Tess is a system for helping to cope with schema evolutior;[he existing approaches that suggest opportunities for future

[Le00]. A schema is a set of types. Tess takes a definition mtesearch.
the old and new type and produces a program to transform

data that conforms to the old type into data that conforms tcAcknowledgementsiVe are grateful for many helpful suggestions
the new type. To accomplish this, it automatically creates drom Sonia Bergamaschi, Silvana Castano, Chris Clifton, Hai Hong
mapping from the old to the new type, using a schema-levePo, An Hai Doan, Alon Halevy, Jayant Madhavan, Sergey Melnik,
matching algorithm. Like TransScm, it presumes a high de-Rerée Miller, Rachel Pottinger, Arnie Rosenthal, Dennis Shasha, and
gree of similarity between the schemas. It identifies pairs ofhe anonymous referees.

types as match candidates, and then recursively tries to match
their substructure in a top-down fashion. Two elements ar
match candidates if they have the same name, if they have
pair of subelements that match (i.e., that are of the same type?BBc*OO]
or if they use the same type constructor (in order of prefer-

ence, where name matching is most preferred). The recursion

eferences

Beneventano D, Bergamaschi S, Castano S, Corni A,
Guidetti R, Malvezzi G, Melchiori M, Vincini M (2000)
Information integration: the MOMIS project demon-

bottoms out with scalar subelements. As the recursive calls stration. In: Proc 26th Int Conf On Very Large Data
percolate back up, matching decisions on coarser-grained el- Bases, pp. 611-614

ements are made based on the results of their finer-graingBLN86]  Batini C, Lenzerini M, Navathe SB (1986) A compara-
subelements. In this sense, Tess performs both structure-level tive analysis of methodologies for database schema in-

and element-level matching. tegration. ACM Comput Surv 18(4):323-364
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