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Abstract

This paper presents the preliminary design of a new
database management system, called POSTGRES, that 1s
the successor to the INGRES relational database system
The main design goals of the new system are to

1) provide better support for complex objects,

2) provide user extendibility for data types, opera-
tors and access methods,

3) provide facihities for active databases (1e, alert-
ers and tnggers) and inferencing including
forward- and backward-chaining,

4) simphfy the DBMS code for crash recovery,

5) produce a design that can take advantage of opti-
cal disks, workstations composed of multiple
tightly-coupled processors, and custom designed
VLSI chips, and

6) make as few changes as possible (preferably
none) to the relational model

The paper describes the query language, programming
langauge 1nterface, system architecture, query processing
strategy, and storage system for the new system

1 INTRODUCTION

The INGRES relational database management sys-
tem (DBMS) was implemented during 1975-1977 at the
Univerisity of California Since 1978 various prototype
extensions have been made to support distributed data-
bases [STON83a), ordered relations [STON83b}, abstract
data types [STONS83c]), and QUEL as a data type
[STON84a] In addition, we proposed but never proto-
typed a new application program interface [STON84b]
The Umiversity of California version of INGRES has been
“hacked up enough” to make the inclusion of substantial
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new function extremely difficult Another problem with
continuing to extend the existing system 1s that many of
our proposed 1deas would be difficult to integrate into
that system because of earher design decisions Conse-
quently, we are building a new database system, called
POSTGRES (POST 1inGRES)

This paper describes the design rationale, the
features of POSTGRES, and our proposed implementa-
tion for the system The next section discusses the
design goals for the system Sections 3 and 4 presents
the query language and programming language inter-
face, respectively, to the system Section 5 describes the
system architecture including the process structure,
query processing strategies, and storage system

2 DISCUSSION OF DESIGN GOALS

The relational data model has proven very success-
ful at solving most business data processing problems
Many commercial systems are being marketed that are
based on the relational model and 1n time these systems
will replace older technology DBMS’s However, there
are many engineering applications (e g, CAD systems,
programming environments, geographic data, and graph-
1cs) for which a conventional relational system 1s not
suitable We have embarked on the design and imple-
mentation of a new generation of DBMS’s, based on the
relational model, that will provide the facilities required
by these applications This section describes the major
design goals for this new system

The first goal 1s to support complex objects [LORI83,
STON83c] Engineering data, in contrast to business
data, 1s more complex and dynamic Although the
required data types can be ssmulated on a relational sys-
tem, the performance of the applications 1s unacceptable
Consider the following simple example The objective 1s
to store a collection of geographic objects 1n a database
(e g, polygons, lines, and circles) In a conventional rela-
tional DBMS, a relation for each type of object with
appropriate fields would be created

POLYGON (1d, other fields)
CIRCLE (1d, other fields)
LINE (d, other fields)

To display these objects on the screen would require
additional 1nformation that represented display charac-
teristics for each object (e g, color, position, scaling fac-
tor, etc) Because this information 1s the same for all
objects, 1t can be stored 1n a single relation



DISPLAY( color, position, scaling, obj-type, object-1d)

The “object-1d” field 1s the 1dentifier of a tuple 1n a rela-
tion identified by the “obj-type” field 1e, POLYGON,
CIRCLE, or LINE) Given this representation, the fol-
lowing commands would have to be executed to produce a
display

foreach OBJ 1n {POLYGON, CIRCLE, LINE} do
range of O 1s OBJ
range of D 1s DISPLAY
retrieve (D all, O all)
where D object-1d = 01d
and D obj-type = OBJ

Unfortunately, this collection of commands will not be
executed fast enough by any relational system to “paint
the screen” in real time (1e, one or two seconds) The
problem 1s that regardless of how fast your DBMS 1s
there are too many queries that have to be executed to
fetch the data for the object The feature that 1s needed
18 the ability to store the object 1n a field in DISPLAY so
that only one query 1s required to fetch it Consequently,
our first goal 18 to correct this deficiency

The second goal for POSTGRES is to make 1t easier
to extend the DBMS so that 1t can be used 1n new appli-
cation domams A conventional DBMS has a small set of
built-in data types and access methods Many applica-
tions require speciahized data types (e g, geometic data
types for CAD/CAM or a latitude and longitude position
data type for mapping applications) While these data
types can be simulated on the built-in data types, the
resulting queries are verbose and confusing and the per-
formance can be poor A simple example using boxes 1s
presented elsewhere [STON86] Such applications would
be best served by the abihity to add new data types and
new operators to a DBMS Moreover, B-trees are only
appropriate for certain kinds of data, and new access
methods are often required for some data types For
example, K-D-B trees [ROBI81] and R-trees [GUTM84]
are appropriate access methods for point and polygon
data, respectively

Consequently, our second goal 1s to allow new data
types, new operators and new access methods to be
included 1n the DBMS Moreover, 1t 1s cructal that they
be implementable by non-experts which means easy-to-
use 1nterfaces should be preserved for any code that will
be wnitten by a user Other researchers are pursuing a
similar goal [DEWI85]

The third goal for POSTGRES 1s to support active
databases and rules Many applications are most easily
programmed using alerters and triggers For example,
form-flow applications such as a bug reporting system
require active forms that are passed from one user to
another [TSIC82, ROWES2] In a bug report application,
the manager of the program maintenance group should
be notafied 1f a high priority bug that has been assigned
to a programmer has not been fixed by a specified date
A database alerter 1s needed that will send a message to
the manager calling his attention to the problem
Triggers can be used to propagate updates in the data-
base to maintain consistency For example, deleting a
department tuple 1n the DEPT relation might trigger an
update to delete all employees 1n that department in the
EMP relation

In addition, many expert system applications
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operate on data that i1s more easily described as rules
rather than as data values For example, the teaching
load of professors 1n the EECS department can be
described by the following rules

1) The normal load 1s 8 contact hours per year
2) The scheduling officer gets a 25 percent reduction
3) The chairman does not have to teach

4) Faculty on research leave receive a reduction
proportional to their leave fraction

5) Courses with less than 10 students generate
credit at 0 1 contact hours per student

6) Courses with more than 50 students generate
EXTRA contact hours at a rate of 001 per stu-
dent in excess of 50

7) Faculty can have a credit balance or a deficit of
up to 2 contact hours

These rules are subject to frequent change The leave
status, course assignments, and administrative assign-
ments (e g, chairman and scheduling officer) all change
frequently It would be most natural to store the above
rules 1n a DBMS and then infer the actual teaching load
of individual faculty rather than storing teaching load as
ordinary data and then attempting to enforce the above
rules by a collection of complex integrity constraints
Consequently, our third goal 1s to support alerters,
triggers, and general rule processing

The fourth goal for POSTGRES 1s to reduce the
amount of code in the DBMS written to support crash
recovery Most DBMS’s have a large amount of crash
recovery code that 1s tricky to write, full of special cases,
and very difficult to test and debug Because one of our
goals 18 to allow user-defined access methods, 1t 1s
imperative that the model for crash recovery be as sim-
ple as possible and easily extendible Our proposed
approach 1s to treat the log as normal data managed by
the DBMS which will simplhify the recovery code and
simultaneously provide support for access to the histon-
cal data

Our next goal 1s to make use of new technologies
whenever possible Optical disks (even writable optical
disks) are becoming available in the commercial market-
place Although they have slower access characteristics,
their price-performance and rehability may prove attrac-
tive A system design that includes optical disks 1n the
storage hierarchy will have an advantage Another tech-
nology that we forsee 1s workstation-sized processors
with several CPU’s We want to design POSTGRES 1n
such way as to take advantage of these CPU resources
Lastly, a design that could utilize special purpose
hardware effectively might make a convincing case for
designing and 1mplementing custom designed VLSI
chips Our fifth goal, then, 1s to 1nvestigate a design that
can effectively utilize an optical disk, several tightly cou-
pled processors and custom designed VLSI chips

The last goal for POSTGRES 1s to make as few
changes to the relational model as possible First, many
users 1n the business data processing world will become
famihar with relational concepts and this framework
should be preserved if possible Second, we believe the
original “spartan simplicity” argument made by Codd



[CODD70] 1s as true today as 1n 1970 Lastly, there are
many semantic data models but there does not appear to
be a small model that will solve everyone’s problem For
example, a generalization hierarchy will not solve the
problem of structuring CAD data and the design models
developed by the CAD community will not handle gen-
erahization hierarchies Rather than building a system
that 1s based on a large, complex data model, we believe
a new system should be built on a small, simple model
that 1s extendible We believe that we can accomplish
our goals while preserving the relational model Other
researchers are striving for similar goals but they are
using different approaches [AFSA85, ATKI84, COPES84,
DERRS85, LORI83, LUMS85]

The remainder of the paper describes the design of
POSTGRES and the basic system architecture we pro-
pose to use to implement the system

3. POSTQUEL

This section describes the query language supported
by POSTGRES The relational model as described mn the
original definition by Codd [CODD70] has been
preserved A database 1s composed of a collection of rela-
tions that contain tuples with the same fields defined,
and the values 1n a field have the same data type The
query language 18 based on the INGRES query language
QUEL [HELD75] Several extensions and changes have
been made to QUEL so the new language 1s called POST-
QUEL to distinguish 1t from the original language and
other QUEL extensions described elsewhere [STONG85a,
KUNG84]

Most of QUEL 1s left intact The following com-
mands are included in POSTQUEL without any changes
Create Relation, Destroy Relation, Append, Delete,
Replace, Retrieve, Retrieve into Result, Define View,
Define Integrity, and Define Protection The Modify com-
mand which specified the storage structure for a relation
has been omitted because all relations are stored mn a
particular structure designed to support historical data
The Index command 1s retained so that other access
paths to the data can be defined

Although the basic structure of POSTQUEL 1s very
similar to QUEL, numerous extensions have been made
to support complex objects, user-defined data types and
access methods, time varying data {1e, versions,
snapshots, and historical data), iteration quernes, alert-
ers, triggers, and rules These changes are described in
the subsections that follow

31 Data Definition
The following built-in data types are provided,

1) integers,
2) floating point,
3) fixed length character strings,

4) unbounded varying length arrays of fixed types
with an arbitrary number of dimensions,

5) POSTQUEL, and

6) procedure

Scalar type fields (e g, integer, floating point, and fixed
length character strings) are referenced by the conven-
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tional dot notation (e g, EMP name)

Variable length arrays are provided for applications
that need to store large homogenous sequences of data
(e g, signal processing data, image, or voice) Fields of
this type are referenced in the standard way (eg,
EMP picture[1] refers to the 1-th element of the picture
array) A special case of arrays 1s the text data type
which 13 a one-dimensional array of characters Note
that arrays can be extended dynamically

Fields of type POSTQUEL contain a sequence of
data manipulation commands They are referenced by
the conventional dot notation However, if a POSTQUEL
field contains a retrieve command, the data specified by
that command can be implicitly referenced by a multiple
dot notation (e g, EMP hobbies battingavg) as proposed
elsewhere [STON84a] and first suggested by Zaniolo in
GEM [ZAN183]

Fields of type procedure contain procedures written
in a general purpose programming language with embed-
ded data manipulation commands (eg, EQUEL
{ALLM76] or Rigel [ROWE79]) Fields of type procedure
and POSTQUEL can be executed using the Execute com-
mand Suppose we are given a relation with the follow-
ing definition

EMP(name, age, salary, hobbies, dept)

in which the “hobbies” field 1s of type POSTQUEL That
18, “hobbies” contains queries that retrieve data about
the employee’s hobbies from other relations The follow-
ing command will execute the queries n that field

execute (EMP hobbies)
where EMP name = “Smith”

The value returned by this command can be a sequence
of tuples with varying types because the field can contain
more than one retrieve command and different com-
mands can return different types of records Conse-
quently, the programming language interface must pro-
vide facilities to determne the type of the returned
records and to access the fields dynamically

Fields of type POSTQUEL and procedure can be
used to represent complex objects with shared subobjects
and to support multiple representations of data Exam-
ples are given in the next section on complex objects

In addition to these built-in data types, user-defined
data types can be defined using an interface similar to
the one developed for ADT-INGRES [STONB83c,
STON86] New data types and operators can be defined
with the user-defined data type facility

3 2. Complex Objects

This section describes how fields of type POSTQUEL
and procedure can be used to represent shared complex
objects and to support multiple representations of data

Shared complex objects can be represented by a field
of type POSTQUEL that contains a sequence of com-
mands to retrieve data from other relations that
represent the subobjects For example, given the rela-
tions POLYGON, CIRCLE, and LINE defined above, an
object relation can be defined that represents complex
objects composed of polygons, circles, and hnes The
definition of the object relation would be

create OBJECT (name = char[10], obj = postquel)
The table 1n figure 1 shows sample values for this rela-



tion The relation contains the description of two com-
plex objects named “apple” and “orange” The object
“apple” 1s composed of a polygon and a circle and the

OBJ

retrieve (POLYGON all)
where POLYGON 1d = 10
retrieve (CIRCLE all)
where CIRCLE id = 40
retrieve (LINE all)

where LINE1d = 17
retrieve (POLYGON all)
where POLYGON id = 10

Name
apple

orange

Figure 1 Example of an OBJECT relation

object “orange” 1s composed of a hne and a polygon
Notice that both objects share the polygon with 1d equal
to 10

Multiple representations of data are useful for cach-
ing data 1n a data structure that 1s better suited to a par-
ticular use while still retaining the ease of access via a
relational representation Many examples of this use are
found 1n database systems (e g, main memory relation
descriptors) and forms systems [ROWES85] Multiple
representations can be supported by defining a procedure
that translates one representation (eg, a relational
representation) to another representation (e g, a display
list suitable for a graphics display) The translation pro-
cedure 1s stored 1n the database Continuing with our
complex object example, the OBJECT relation would
have an additional field, named “display,” that would
contain a procedure that creates a display list for an
object stored in POLYGON, CIRCLE, and LINE

create OBJECT(name =char[10], obj=postquel,
display =cproc)

The value stored 1n the display field 1s a procedure writ-
ten 1n C that queries the database to fetch the subobjects
that make up the object and that creates the display list
representation for the object

This solution has two problems the code 1s repeated
1n every OBJECT tuple and the C procedure rephcates
the queries stored in the object field to retrieve the
subobjects These problems can be solved by storing the
procedure 1n a separate relation (1e, normalizing the
database design) and by passing the object to the pro-
cedure as an argument The defimition of the relation 1n
which the procedures will be stored 1s

create OBJPROC(name=char[12], proc=cproc)
append to OBJPROC(name ="display-list”,
proc=" source code ")
Now, the entry 1n the display field for the “apple” object
18

execute (OBJPROC proc)

with (“apple”)

where OBJPROC name ="display-list”

This command executes the procedure to create the alter-
native representation and passes to 1t the name of the
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object Notice that the “display” field can be changed to
a value of type POSTQUEL because we are not storing
the procedure in OBJECT, only a command to execute
the procedure At this point, the procedure can execute a
command to fetch the data Because the procedure was
passed the name of the object 1t can execute the following
command to fetch 1its value

execute (OBJECT oby)
where OBJECT name =argument

This solution 1s somewhat complex but 1t stores only one
copy of the procedure’s source code 1n the database and 1t
stores only one copy of the commands to fetch the data
that represents the object

Fields of type POSTQUEL and procedure can be
efficiently supported through a combination of compila-
tion and precomputation described 1n sections 4 and 5

33 Timme Varying Data

POSTQUEL allows users to save and query histori-
cal data and versions [KATZ85, WOOD83] By default,
data 1n a relation 1s never deleted or updated Conven-
tional retrievals always access the current tuples in the
relation Historical data can be accessed by indicating
the desired time when defining a tuple vanable For
example, to access historical employee data a user writes

retrieve (E all)
from E in EMP[*7 January 1985"]

which retrieves all records for employees that worked for
the company on 7 January 1985 The From-clause which
1s sumilar to the SQL mechanism to define tuple vari-
ables [ASTR76], replaces the QUEL Range command
The Range command was removed from the query
language because 1t defined a tuple variable for the dura-
tion of the current user program Because queries can be
stored as the value of a field, the scope of tuple variable
definitions must be constrained The From-clause makes
the scope of the defimtion the current query

This bracket notation for accessing historical data
impheitly defines a snapshot [ADIB80] The implementa-
tion of queries that access this snapshot, described in
detail 1n section 5, searches back through the history of
the relation to find the appropriate tuples The user can
materialize the snapshot by executing a Retrieve-into
command that will make a copy of the data in another
relation

Applications that do not want to save historical data
can specify a cutoff point for a relation Data that 1s
older than the cutoff point 1s deleted from the database
Cutoff points are defined by the Discard command The
command

discard EMP before “1 week”

deletes data in the EMP relation that 1s more than 1
week old The commands

discard EMP before “now”
and
discard EMP
retain only the current data in EMP

It 15 also possible to write queries that reference
data which 1s valid between two dates The notation

relation-name[datel, date2]}



specifies the relation containing all tuples that were in
the relation at some time between datel and date2
Either or both of these dates can be omtted to specify all
data 1n the relation from the time 1t was created until a
fixed date (1 e, relation-name[,date]), all data in the rela-
tion from a fixed date to the present (1e, relation-
name[date,]), or all data that was every in the relation
(1e, relation-name[ 1) For example, the query

retrieve (E all)
from E in EMP{ ]
where E name ="“Smith”

returns all information on employees named Smith who
worked for the company at any time

POSTQUEL has a three level memory hierarchy 1)
main memory, 2) secondary memory (magnetic disk), and
3) tertiary memory (optical disk) Current data 1s stored
1n secondary memory and historical data migrates to ter-
tiary memory However, users can query the data
without having to know where the data 1s stored

Finally, POSTGRES provides support for versions
A version can be created from a relation or a snapshot
Updates to a version do not modify the underlying rela-
tion and updates to the underlying relation will be visi-
ble through the version unless the value has been
modified 1in the version Versions are defined by the
Newversion command The command

newversion EMPTEST from EMP

creates a version named EMPTEST that 1s derived from
the EMP relation If the user wants to create a version
that 1s not changed by subsequent updates to the under-
lying relation as in most source code control systems
[TICHS82], he can create a version off a snapshot

A Merge command 15 provided that will merge the
changes made 1n a version back into the underlying rela-
tion An example of a Merge command 1s

merge EMPTEST into EMP

The Merge command will use a semi-automatic pro-
cedure to resolve updates to the underlying relation and
the version that conflict [GARC84]

This section described POSTGRES support for time
varying data The strategy for implementing these
features 1s described below 1n the section on system
architecture

34. Iteration Queries, Alerters, Triggers, and
Rules

This section describes the POSTQUEL commands
for specifying 1terative execution of queries, alerters
[BUNE79], triggers [ASTR76], and rules

Iterative queries are requried to support transitive
closure (GUTM84 KUNGS84] Iteration 1s specified by
appending an asterisk (“*”) to a command that should be
repetitively executed For example, to construct a rela-
tion that includes all people managed by someone either
directly or indirectly a Retrieve*-into command 1s used
Suppose one 1s given an employee relation with a name
and manager field

create EMP(name=char[20], ,mgr=char[20], )

The following query creates a relation that conatins all
employees who work for Jones
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retrieve* into SUBORDINATES(E name, E mgr)
from E ;n EMP, S in SUBORDINATES
where E name="Jones”

or E mgr=S8 name

This command continues to execute the Retrieve-into
command until there are no changes made to the
SUBORDINATES relation

The “*” modifier can be appended to any of the
POSTQUEL data manipulation commands Append,
Delete, Execute, Replace, Retrieve, and Retrieve-into
Complex iterations, hike the A-* heuristic search algo-
rithm, can be specified using sequences of these 1teration
queries [STON85b]

Alerters and triggers are specified by adding the
keyword “always” to a query For example, an alerter 1s
specified by a Retrieve command such as

retrieve always (EMP all)
where EMP name = “Bill”

This command returns data to the application program
that 1ssued 1t whenever Bill’'s employee record 1s
changed! A trigger 1s an update query (1e, Append,
Replace, or Delete command) with an “always” keyword
For example, the command

delete always DEPT
where count(EMP name by DEPT dname
where EMP dept = DEPT dname) = 0

defines a trigger that will delete DEPT records for
departments with no employees

Iteration queries differ from alerters and triggers in
that 1teration queries run until they cease to have an
effect while alerters and triggers run indefimitely An
efficient mechanism to awaken “always” commands 1s
described 1n the system architecture section

“Always” commands support a forward-chaiming
control structure in which an update wakes up a collec-
tion of alerters and triggers that can wake up other com-
mands This process terminates when no new commands
are awakened POSTGRES also provides support for a
backward-chaining control structure

The conventional approach to supporting inference
1s to extend the view mechanism (or something
equivalent) with additional capabilities (e g [ULLMS85,
WONG84, JARKS85]) The canonical example 1s the
definition of the ANCESTOR relation based on a stored
relation PARENT

PARENT (parent-of, offspring)

Ancestor can then be defined by the following commands
range of P 1s PARENT

range of A 1s ANCESTOR

define view ANCESTOR (P all)

define view* ANCESTOR (A parent-of, P offspring)
where A offspring = P parent-of

Notice that the ANCESTOR view 1s defined by multiple
commands that may involve recursion A query such as

retrieve (ANCESTOR parent-of)
where ANCESTOR offspring = “B1ll”

! Stnctly speaking the data 1s returned to the program
through a portal which 1s defined in section 4



1s processed by extensions to a standard query
modification algorithm [STON75] to generate a recursive
command or a sequence of commands on stored relations
To support this mechamism, the query optimizer must be
extended to handle these commands

This approach works well when there are only a few
commands which define a particular view and when the
commands do not generate conflicting answers This
approach 1s less successful if either of these conditions 1s
violated as in the following example

define view DESK-EMP (EMP all, desk = “steel”)
where EMP age < 40

define view DESK-EMP (EMP all, desk = “wood”
where EMP age > = 40

define view DESK-EMP (EMP all, desk = “wood”)
where EMP name = “hotshot”

define view DESK-EMP (EMP all, desk = “steel™

where EMP name = “bigshot”

In this example, employees over 40 get a wood desk,
those under 40 get a steel desk However, "hotshot” and
“bigshot” are exceptions to these rules “Hotshot” 1s
given a wood desk and “bigshot” 1s given a steel desk,

regardless of their ages In this case, the query

retrieve (DESK-EMP desk) where DESK-EMP name
= "bigshot”

will require 4 separate commands to be optimized and
run  Moreover, both the second and the fourth
definitions produce an answer to the query that 1s
different In the case that a larger number of view
definitions 1s used in the specification of an object, then
the 1mportant performance parameter will be 1solating
the view definitions which are actually useful Moreover,
when there are conflicting view defimitions (e g the gen-
eral rule and then exceptional cases), one requires a
priority scheme to decide which of conflicting definitions
to utilize The scheme described below works well 1n such
situations

POSTGRES supports backward-chaining rules by
virtual columns (1e, columns for which no value 1s
stored) Data in such columns 1s inferred on demand
from rules and cannot be directly updated, except by
adding or dropping rules Rules are specified by adding
the keyword “demand” to a query Hence, for the
DESK-EMP example, the EMP relation would have a
virtual field, named “desk,” that would be defined by four
rules

replace demand EMP (desk = "steel”)
where EMP age < 40

replace demand EMP (desk = “wood”
where EMP age >= 40

replace demand EMP (desk = “wood”)

where EMP name = “hotshot”
replace demand EMP (desk = “steel”)
where EMP name = “bigshot”

The third and fourth commands would be defined at a
higher priority than the first and second A query that
accessed the desk field would cause the “demand” com-
mands to be processed to determine the appropriate desk
value for each EMP tuple retrieved

This subsection has described a collection of facili-
ties provided in POSTQUEL to support complex queries
(e g, 1teration) and active databases (eg, alerters,
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triggers, and rules) Efficient techniques for implement-
ing these facihities are given 1n section 5

4. PROGRAMMING LANGUAGE
FACE

This section describes the programming language
interface (HITCHING POST) to POSTGRES We had
three objectives when designing the HITCHING POST
and POSTGRES facihities First, we wanted to design
and 1mplement a mechamsm that would simplhfy the
development of browsing style applications Second, we
wanted HITCHING POST to be powerful enough that all
programs that need to access the database including the
ad hoc terrinal monitor and any preprocessors for
embedded query languages could be written with the
interface And lastly, we wanted to provide facihities
that would allow an application developer to tune the
performance of his program (1e, to trade flexibihity and
reliability for performance)

Any POSTQUEL command can be executed in a
program In addition, a mechanism, called a “portal,” 1s
provided that allows the program to retrieve data from
the database A portal 1s similar to a cursor [ASTR76],
except that 1t allows random access to the data specified
by the query and the program can fetch more than one
record at a ttme The portal mechanism described here
1s different than the one we previously designed
[STON84b), but the goal 1s still the same The following
subsections describe the commands for defining portals
and accessing data through them and the facilities for
improving the performance of query execution (1e, com-
pilation and fast-path)

INTER-

4.1. Portals

A portal 1s defined by a Retrieve-portal or Execute-
portal command For example, the following command
defines a portal named P

retrieve portal PC(EMP all)
where EMP age < 40

This command 1s passed to the backend process which
generates a query plan to fetch the data The program
can now 1ssue commands to fetch data from the backend
process to the frontend process or to change the “current
position” of the portal The portal can be thought of as a
query plan in execution in the DBMS process and a
buffer containing fetched data in the application process

The program fetches data from the backend into the
buffer by executing a Fetch command For example, the
command

fetch 20 into P

fetches the first twenty records in the portal into the
frontend program These records can be accessed by sub-
script and field references on P For example, P[1] refers
to the 1-th record returned by the last Fetch command
and Pli1]lname refers to the "name” field in the i-th
record  Subsequent fetches replace the previously
fetched data 1n the frontend program buffer

The concept of a portal is that the data 1n the buffer
1s the data currently being displayed by the browser
Commands entered by the user at the terminal are
translated into database commands that change the data
1n the buffer which 1s then redisplayed Suppose, for
example, the user entered a command to scroll forward



half a screen This command would be translated by the
frontend program (1e, the browser) into a Move com-
mand followed by a Fetch command The following two
commands would fetch data into the buffer which when
redisplayed would appear to scroll the data forward by
one half screen

move P forward 10
fetch 20 into P

The Move command repositions the “current position” to
point to the 11-th tuple 1n the portal and the Fetch com-
mand fetches tuples 11 through 30 in the ordering esta-
blished by executing the query plan The “current posi-
tion” of the portal 1s the first tuple returned by the last
Fetch command If Move commands have been executed
since the last Fetch command, the “current position” 1s
the first tuple that would be returned by a Fetch com-
mand 1if 1t were executed

The Move command has other varations that sim-
phfy the implementation of other browsing commands
Variations exist that allow the portal postion to be
moved forward or backward, to an absolute position, or to
the first tuple that satisfies a predicate For example, to
scroll backwards one half screen, the following commands
are 1ssued

move P backward 10
fetch 20 into P

In addition to keeping track of the “current position,” the
backend process also keeps track of the sequence number
of the current tuple so that the program can move to an
absolute position For example, to scroll forward to the
63-rd tuple the program executes the command

move P forward to 63

Lastly, a Move command 1s provided that will
search forward or backward to the first tuple that
satisfies a predicate as 1illustrated by the following com-
mand that moves forward to the first employee whose
salary 1s greater than $25,000

move P forward to salary > 25K

This command positions the portal on the first qualifying
tuple A Fetch command will fetch this tuple and the
ones mmmediately following 1t which may not satisfy the
predicate To fetch only tuples that satisfy the predicate,
the Fetch command 1s used as follows

fetch 20 into P where salary > 25K

The backend process will continue to execute the query
plan until 20 tuples have been found that satisfy the
predicate or until the portal data 1s exhausted

Portals differ significantly from cursors in the way
data 1s updated Once a cursor i1s positioned on a record,
1t can be modified or deleted (1e, updated directly)
Data 1n a portal cannot be updated directly It 1s
updated by Delete or Replace commands on the relations
from which the portal data 1s taken Suppose the user
entered commands to a browser that change Smith’s
salary Assuming that Smuth’s record 1s already in the
buffer, the browser would translate this request into the
following sequence of commands

replace EMP(salary = NewSalary)
where EMP name = “Smith”
fetch 20 1nto P
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The Replace command modifies Smith’s tuple 1n the EMP
relation and the Fetch command synchronizes the buffer
in the browser with the data 1n the database We chose
this indirect approach to updating the data because it
makes sense for the model of a portal as a query plan
In our previous formulation [STON84], a portal was
treated as an ordered view and updates to the portal
were treated as view updates We believe both models
are viable, although the query plan model requires less
code to be written

In addition to the Retrieve-portal command, portals
can be defined by an Execute command For example,
suppose the EMP relation had a field of type POSTQUEL
named “hobbies”

EMP (name, salary, age, hobbies)

that contained commands to retrieve a person’s hobbies
from the following relations

SOFTBALL (name, position, batting-avg)
COMPUTERS (name, 1sowner, brand, interest)

An apphication program can define a portal that will
range over the tuples describing a person’s hobbies as fol-
lows

execute portal H(EMP hobbies)
where EMP name = “Smith”

This command defines a portal, named “H,” that 1s bound
to Smith’s hobby records Since a person can have
several hobbies, represented by more than on Retrieve
command 1n the “hobbies” field, the records 1n the buffer
may have different types Consequently, HITCHING
POST must provide routines that allow the program to
determine the number of fields, and the type, name, and
value of each field 1n each record fetched into the buffer

4 2. Compilation and Fast-Path

This subsection describes facilities to improve the
performance of query execution Two facilities are pro-
vided query compilation and fast-path Any POSTQUEL
command, including portal commands, can take advan-
tage of these facilities

POSTGRES has a system catalog in which applica-
tion programs can store queries that are to be compiled
The catalog 1s named “CODE” and has the following
structure

CODEGd, owner, command)

The “1d” and “owner” fields form a unique 1dentifier for
each stored command The “command” field holds the
command that 1s to be compiled Suppose the program-
mer of the relation browser described above wanted to
compile the Replace command that was used to update
the employee's salary field The program could append
the command, with suitable parameters, to the CODE
catalog as follows

append to CODEGd =1, owner ="browser”,
command ="replace EMP(salary =$§1)
where EMP name = $2”)

“$1” and “$2” denote the arguments to the command
Now, to execute the Replace command that updates
Smith’s salary shown above, the program executes the
following command



execute (CODE command)
with (NewSalary, “Smith”)
where CODE 1d=1 and CODE owner="browser”

This command executes the Replace command after sub-
stituting the arguments

Executing commands stored in the CODE catalog
does not by itself make the command run any faster
However, a compilation demon 1s always executing that
examines the entries 1n the CODE catalog 1n every data-
base and compiles the quertes Assuming the compila-
tion demon has compiled the Replace command in CODE,
the query should run substantially faster because the
time to parse and optimize the query 1s avoided Section
5 describes a general purpose mechanism for invalidating
compiled queries when the schema changes

Compiled queres are faster than queries that are
parsed and optirmzed at run-time but for some applica-
tions, even they are not fast enough The problem 1s that
the Execute command that invokes the compiled query
st1ll must be processed Consequently, a fast-path facil-
1ty 1s provided that avouds this overhead In the Execute
command above, the only vanability 1s the argument hst
and the unique 1dentafier that selects the query to be run
HITCHING POST has a run-time routine that allows
this information to be passed to the backend in a binary
format For example, the following function call invokes
the Replace command described above

exec-fp(1, “browser”, NewSalary, “Smith”)

This function sends a message to the backend that
includes only the information needed to determine where
each value 1s located The backend retrieves the com-
piled plan (possibly from the buffer pool), substitutes the
parameters without type checking, and invokes the query
plan This path through the backend 1s hand-optimized
to be very fast so the overhead to invoke a compiled
query plan 1s minimal

This subsection has described facilities that allow an
application programmer to improve the performance of a
program by compiling queries or by using a special fast-
path facility

5. SYSTEM ARCHITECTURE

This section describes how we propese to implement
POSTGRES The first subsection describes the process
structure The second subsection describes how query
processing will be implemented, including fields of type
POSTQUEL, procedure, and user-defined data type The
third subsection describes how alerters, triggers, and
rules will be implemented And finally, the fourth sub-
section describes the storage system for implementing
time varying data

5.1. Process Structure

DBMS code must run as a sparate process from the
application programs that access the database 1n order to
provide data protection The process structure can use
one DBMS process per apphcation program (1e, a
process-per-user model [STON81]) or one DBMS process
for all apphcation programs (1 e, a server model) The
server model has many performance benefits (e g, shar-
ing of open file descriptors and buffers and optimized
task switching and message sending overhead) 1n a large
machine environment i which high performance 1s criti-
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cal However, this approach requires that a fairly com-
plete special-purpose operating system be built In con-
strast, the process-per-user model 1s simpler to 1mple-
ment but will not perform as well on most conventional
operating systems We decided after much soul search-
ing to implement POSTGRES using a process-per-user
model architecture because of our limited programming
resources POSTGRES 1s an ambitious undertaking and
we believe the additional complexity introduced by the
server architecture was not worth the additional risk of
not getting the system running Our current plan then
1s to implement POSTGRES as a process-per-user model
on Unix 4 3 BSD

The process structure for POSTGRES 1s shown in
figure 3 The POSTMASTER will contain the lock
manager (since there are no shared segments 1n 4 3 BSD)
and will control the demons that will perform various
database services (such as asynchronously compiling user
commands) There will be one POSTMASTER process
per machine, and 1t will be started at “sysgen” time

The POSTGRES run-time system executes com-
mands on behalf of one application program However, a
program can have several commands executing at the
same time The message protocol between the program
and backend will use a simple request-answer model
The request message will have a command designator
and a sequence of bytes that contain the arguments The
answer message format will include a response code and
any other data requested by the command Notice that
in contrast to INGRES [STON76] the backend will not

demon
POSTMASTER processes
POSTGRES user
run-time f———— program
system

Figure 3 POSTGRES process structure

*load up” the communication channel with data The
frontend requests a bounded amount of data with each
command

5.2 Query Processing

This section describes the query processing stra-
tegies that will be implemented 1n POSTGRES We plan
to implement a conventional query optimizer However,
three extensions are required to support POSTQUEL
First, the query optimizer must be able to take advan-
tage of user-defined access methods Second, a general-
purpose, efficient mechanism 1s needed to support fields
of type POSTQUEL and procedure And third, an
efficient mechanism 1s required to support triggers and
rules This section describes our proposed implementa-
tion of these mechanisms



521. Support for New Types

As noted elsewhere [STONS86], existing access
methods must be usable for new data types, new access
methods must be definable, and query processing heuris-
tics must be able to optimize plans for which new data
types and new access methods are present The basic
1dea 15 that an access method can support fast access for
a specific collection of operators In the case of B-trees,
these operators are {<, =, >, >=, <=} Moreover,
these operators obey a collection of rules Again for B-
trees, the rules obeyed by the above set of operators 1s

P1) key-1 < key-2 and key-2 < key-3
then key-1 < key-3
P2) key-1 < key-2 implies not key-2 < key-1
P3) key-1 < key-2 or key-2 < key-1
or key-1 = key-2
P4) key-1 <= key-2 1f key-1 < key-2
or key-1 = key-2
P5) key-1 = key-2 imphies key-2 = key-1
P6) key-1 > key-2 1f key-2 < key-1
P7) key-1 >= key-2 if key-2 <= key-1
A B-tree access method will work for any collection of
operators that obey the above rules The protocol for
defining new operators will be similar to the one
described for ADT-INGRES (STON83c] Then, a user
need simply declare the collection of operators that are to
be utilized when he builds an index, and a detailed syn-
tax 18 presented 1n [STON86)

In addition, the query optimizer must be told the
performance of the various access paths Following
[SELI79], the required information will be the number of
pages touched and the number of tuples examined when
processing a clause of the form

relation column OPR value

These two values can be included with the defimtion of
each operator, OPR The other information required 1s
the join selectivity for each operator that can participate
1n a join, and what join processing strategies are feasible
In particular, nested iteration 1s always a feasible stra-
tegy, however both merge-join and hash-join work only 1n
restrictive cases For each operator, the optimizer must
know whether merge-join 1s usable and, if so, what
operator to use to sort each relation, and whether hash-
join 1s usable Our proposed protocol includes this infor-
mation with the definition of each operator

Consequently, a table-driven query optimizer will be
mmplemented Whenever a user defines new operators,
the necessary information for the optimizer will be placed
1n the system catalogs which can be accessed by the
optimzier For further details, the reader 1s refered else-

where [STON86]

522, Support for Procedural Data

The main performance tactic which we will utilize 1s
precomputing and caching the result of procedural data
This precomputation has two steps

1) compiling an access plan for POSTQUEL commands

2) executing the access plan to produce the answer

When a collection of POSTQUEL commands 1s executed
both of the above steps must be performed Current
systems drop the answer on the floor after obtaining 1it,

and have special code to invahidate and recompute access

plans (eg [ASTR76]) On the other hand, we expect to
cache both the plan and the answer For small answers,
we expect to place the cached value in the field itself
For larger answers, we expect to put the answer 1n a
relation created for the purpose and then put the name of
the relation 1n the field 1tself where 1t will serve the role
of a pointer

Moreover, we expect to have a demon which wll
run 1 background mode and compile plans utilizing oth-
erwise 1dle time or 1dle processors Whenever a value of
type procedure 1s inserted into the database, the run-
time system will also insert the i1dentity of the user sub-
mitting the command Compilation entails checking the
protection status of the command, and this will be done
on behalf of the submitting user Whenever, a pro-
cedural field 1s executed, the run-time system will ensure
that the user 1s authorized to do so In the case of “fast-
path,” the run-time system will require that the execut-
ing user and defining user are the same, so no run-time
access to the system catalogs 1s required This same
demon will also precompute answers In the most for-
tunate of cases, access to procedural data 1s instantane-
ous because the value of the procedure 1s cached In
most cases, a previous access plan should be vahd spar-
ing the overhead of this step

Both the compiled plan and the answer must be
mnvalidated if necessary The plan must be invahdated 1f
the schema changes inappropriately, while the answer
must be invahdated 1f data that it accesses has been
changed We now show that this invalidation can be
efficiently supported by an extended form of locks In a
recent paper [STON85¢c] we have analyzed other alter-
nate implementations which can support needed capabili-
ties, and the one we will now present was found to be
attractive 1n many situations

We propose to support a new kind of lock, called an
I lock The compatibility matrix for I locks 1s shown 1n
figure 4 When a command 1s compiled or the answer
precomputed, POSTGRES will set I locks on all database
objects accessed during compilation or execution These I
locks must be persistent (1e survive crashes), of fine
granulanty (1e on tuples or even fields), escalatable to
coarser granularity, and correctly detect “phantoms”
[ESWAT75] In [STONS8S5a), 1t 1s suggested that the best
way to satisfy these goals 1s to place I locks in data
records themselves

R W 1
R ok no ok

W no no *
I ok no ok

Figure 4 Compatibility modes for I locks

The * 1n the table 1n figure 4 indicates that a write
lock placed on an object contaiming one or more I locks
will simply cause the precomputed objects holding the I
lIocks to be invahdated Consequently, they are called
“invalidate-me” locks A user can 1ssue a command



retrieve (relation I) where qualification

which will return the identifiers of commands having I
locks on tuples mn question In this way a user can see
the consequences of a proposed update

Fields of type POSTQUEL can be compiled and
POSTQUEL fields with no update statements can be
precomputed Fields of type procedure can be compiled
and procedures that do not do input/output and do not
update the database can be precomputed

52.3 Alerters, Triggers, and Inference

This section describes the tactic we will use to
implement alerters, triggers, and inference

Alerters and triggers are specified by including the
keyword “always” on the command The proposed 1mple-
mentation of “always” commands 1s to run the command
until 1t ceases to have an effect Then, it should be run
once more and another special kind of lock set on all
objects which the commands will read or write These T
locks have the compatibility matrix shown in figure 5
Whenever a transaction writes a data object on which a
T-lock has been set, the lock manager simply wakes-up
the corresponding “always” command Dormant
“always” commands are stored in a system relation n a
field of type POSTQUEL As with I locks, T locks must
be persistent, of fine granularity and escalatable More-
over, the identity of commands holding T locks can be
obtained through the special field, T added to all rela-
tions

R W 1 T
R ok no ok ok
W no no * #
I ok no ok ok
T ok no ok ok

Figure 5 Compatibility modes for T locks

Recall that inferencing will be support by virtual
fields (1e, “demand” commands) “Demand” commands
will be 1mplemented similar to the way “always” com-
mands are implemented Each “demand” command
would be run until the collection of objects which 1t pro-
poses to write are 1solated Then a D lock 1s set on each
such object and the command placed 1n a POSTQUEL
field 1n the system catalogs The compatibihty matrx for
D locks 1s shown in figure 6 The “&” indicates that
when a command attempts to read an object on which a
D lock has been set, the “demand” command must be
substituted 1nto the command being executed using an
algorithm similar to query modification to produce a new
command to execute This new command represents a
subgoal which the POSTGRES system attempts to
satisfy If another D lock 1s encountered, a new subgoal
will result, and the process will only terminate when a
subgoal runs to completion and generates an answer
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R W 1 T D

R ok no ok ok &

W no no * # no
1 ok no ok ok ok
T ok no ok ok ok
D ok no * # ok

Figure 6 Compatibility modes for D locks

Moreover, this answer can be cached in the field and
invahdated when necessary, if the intermediate goal
commands set I locks as they run This process 1s a data-
base version of PROLOG style unification {CLOC81], and
supports a backward chaining control flow The algo-
rithm details appear 1n [STON85b] along with a proposal
for a priority scheme

53. Storage System

The database will be partly stored on a magnetic
disk and partly on an archival medium such as an optical
disk Data on magnetic disk includes all secondary
indexes and recent database tuples The optical disk 1s
reserved as an archival store containing historical tuples
There will be a demon which “vacuums” tuples from
magnetic disk to optical disk as a background process
Data on magnetic disk will be stored using the normal
UNIX file system with one relation per file The optical
disk will be organmized as one large repository with tuples
from various relations intermixed

All relations will be stored as heaps (as 1n
[ASTR76]) with an optional collection of secondary
indexes In addition relations can be declared “nearly
ordered,” and POSTGRES will attempt to keep tuples
close to sort sequence on some column Lastly, secondary
indexes can be defined, which consist of two separate
physical indexes one for the magnetic disk tuples and one
for the optical disk tuples, each 1n a separate UNIX file
on magnetic disk Moreover, a secondary index on will
automatically be provided for all relations on a unique
1dentifier field which 1s described 1n the next subsection
This 1index will allow any relation to be sequentially
scanned

531 Data Format

Every tuple has an immutable unique identifier
(TID) that 1s assigned at tuple creation time and never
changes This 1s a 64 bit quantity assigned internally by
POSTGRES Moreover, each transaction has a unique 64
bit transaction 1dentifier (XACTID) assigned by
POSTGRES Lastly, there 1s a call to a system clock
which can return timestamps on demand Loosely, these
are the current time-of-day

Tuples will have all non-null fields stored adjacently

1 a physical record Moreover, there will be a tuple
prefix contaiming the following extra fields



11D immutable 1d of this tuple

tmin the timestamp at which this tuple
becomes valid

BXID the transaction 1dentifier that
assigned tmin

tmax the timestamp at which this tuple

ceases to be vahd

EXID the transaction 1dentifier that
assigned tmax
v-IID the immutable 1d of a tuple 1n this

or some other version
descriptor descriptor on the front of a tuple

The descripior contains the offset at which each non-null
field starts, and 1s similar to the data structure attached
to System R tuples [ASTR76] The first transaction
identifier and timestamp correspond to the timestamp
and 1dentifier of the creator of this tuple When the
tuple 18 updated, 1t 1s not overwritten, rather the
identifier and timestamp of the updating transaction are
recorded in the second (timestamp, transaction identifier)
slot and a new tuple 18 constructed in the database The
update rules are described in the following subsection
while the details of version management are deferred to
later 1n the section

5.3.2. Update and Access Rules

On an 1nsert of a new tuple into a relation, tmin 1s
marked with the timestamp of the inserting transaction
and its identity 18 recorded in BXID When a tuple 1s
deleted, tmax 1s marked with the timestamp of the delet-
ing transaction and its identity 1s recorded in EXID An
update to a tuple 18 modelled as an insert followed by a
delete

To find all the record which have the qualification,
QUAL at time T the run time system must find all mag-
netic disk records such that

1) tmin < T < tmax and BXID and EXID are
committed and QUAL

2) tmin < T and tmax = null and BXID 1s
commtted and QUAL

3) tmin < T and BXID = committed and EXID

= not-commtted and QUAL

Then 1t must find all optical disk records satisfying 1) A
special transaction log 1s described below that allows the
DBMS to determine quickly whether a particular tran-
saction has committed

533 The POSTGRES Log and Accelerator

A new XACTID 1s assigned sequentially to each
new transaction When a transaction wishes to commut,
all data pages which 1t has written must be forced out of
memory (or at least onto stable storage) Then a single
bit 1s written into the POSTGRES log and an optional
transaction accelerator

Consider three transaction identifiers, T1 which 18
the “youngest” transaction identifier which has been
assigned, T2 which 18 a “young” transaction but
guaranteed to be older than the oldest active transaction,
and T3 which 1s a “young” transaction that 1s older than
the oldest committed transaction which wrote data which
1s still on magnetic disk Assume that T1.T3 are
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recorded 1n “secure mamm memory” to be presently
described

For any transaction with an 1dentifier between T1
and T2, we need to know which of three states 1t 1s 1n

0 = aborted
1 = committed
2 = in-progress

For any transaction with an identifier between T2 and
T3, a “2” 1s 1mpossible and the log can be compressed to
1 bit per transaction For any transaction older than T3,
the vacuum process has written all records to archival
storage Durning this vacuuming, the updates to all
aborted transactions can be discarded, and hence all

archival records correspond to committed transactions
No log need be kept for transactions older than T3

The proposed log structure 1s an ordered relation,
LOG as follows

line-1d the access method supplied ordering field
bit-1{1000] a bit vector
b1t-2{1000]  a second bit vector

The status of xact number 1 1s recorded 1n bit (remainder
of 1 divided by 1000) of line-1d number 1/1000

We assume that several thousand bits (say 1K-10K
bytes) of “secure main memory” are available for 10-100
blocks comprising the “tail” of the log Such main
memory 15 duplexed or triplexed and supported by an
uninterruptable power supply The assumed hardware
structure for this memory 1s the following Assume a cir-
cular “block pool” of n blocks each of size 2000 bits
When more space 18 needed, the oldest block 1s reused
The hardware maintains a pointer which indicates the
current largest xact 1dentifier (T1 - the high water mark)
and which bit 1t will use 1t also has a second pointer
which 1s the current oldest transaction 1n the buffer (the
low water mark) and which bit it points to When high-
water approaches low-water, a block of the log must be
“reliably” pushed to disk and joins previously pushed
blocks Then low-water 1s advanced by 1000 High-
water 18 advanced every time a new transaction 1s
started The operations available on the hardware struc-
ture are

advance the high-water (i e begin a xact)
push a block and update low-water

abort a transaction

commit a transaction

Hopefully, the block pool 1s big enough to allow all
transactions in the block to be commutted or aborted
before the block 1s “pushed ” In this case, the block will
never be updated on disk If there are long runming tran-
sactions, then blocks may be forced to disk before all
transactions are committed or aborted In this case, the
subsequent commits or aborts will require an update to a
disk-based block and will be much slower Such disk
operations on the LOG relation must be done by a special
transaction (transaction zero) and will follow the normal
update rules described above

A trigger will be used to periodically advance T2
and replace bit-2 with nulls (which don’t consume space)
for any log records that correspond to transactions now
older than T2

At 5 transactions per second, the LOG relation will



require about 20 Mbytes per year Although we expect a
substantial amount of buffer space to be available, 1t 1s
clear that high transaction rate systems will not be able
to keep all relevant portions of the XACT relation in
main memory In this case, the run-time cost to check
whether individual transactions have been committed
will be prohibitive Hence, an optional transaction
accelerator which we now describe will be a advanta-
geous addition to POSTGRES

We expect that virtually all of the transaction
between T2 and T3 will be committed transactions Con-
sequently, we will use a second XACT relation as a
bloom filter [SEVR76] to detect aborted transactions as
follows XACT will have tuples of the form

line-1d the access method supplied
ordering field
bitmap{M] a bit map of size M

For any aborted transaction with a XACTID between T2
and T3, the following update must be performed Let N
be the number of transactions allocated to each XACT
record and let LOW be T3 - remainder (T3/N)

replace XACT (bitmap(i] = 1)

where XACT linead = (XACTID - LOW)modulo N

and 1 = hash (remainder (XACTID - LOW) / N))
The vacuum process advances T3 periodically and deletes
tuples from XACT that correspond to transactions now
older than T3 A second trigger will run periodically and
advance T2 performing the above update for all aborted
transactions now older than T2

Consequently, whenever the run-time system wishes
to check whether a candidate transaction, C-XACTID
between T2 and T3 commutted or aborted, 1t examines

bitmap[ hash (reaminder((C-XACTID - LOW) / N))]

If a zero 1s observed, then C-XACTID must have commit-
ted, otherwise C-XACTID may have committed or
aborted, and LOG must be examined to discover the true
outcome

The following analysis explores the performance of
the transaction accelerator

5.3.4. Analysis of the Accelerator

Suppose B bits of main memory buffer space are
available and that M = 1000 These B bits can either
hold some (or all) of LOG or they can hold some (or all)
of XACT Moreover, suppose transactions have a failure
probabihity of F, and N 1s chosen so that X bits in bitmap
are set on the average Hence, N = X/ F In this case,
a collection of Q transactions will require Q bits in LOG
and

Q* F * 1000/ X

bits 1n the accelerator If this quantity 1s greater than Q,
the accelerator 1s useless because 1t takes up more space
than LOG Hence, assume that F * 1000 / X << 1 In
this case, checking the disposition of a transaction in
LOG wll cause a page fault with probability

FAULT (LOG) = 1-[B /Q]

On the other hand, checking the disposition of a transac-
tion 1n the accelerator will cause a page fault with proba-

bility
P(XACT) =1-(B*X)/(Q*F *1000)

With probability
X /1000

a “1” will be observed 1n the accelerator data structure
If

B< Q*F*1000/X

then all available buffer space 1s consumed by the
accelerator and a page fault will be assuredly generated
to check 1n LOG 1if the transaction commtted or aborted

Hence
FAULT (XACT) = P(XACT) + X /1000

If B 1s a larger value, then part of the buffer space can
be used for LOG, and FAULT decreases

The difference 1n fault probability between the log
and the accelerator

delta = FAULT (LOG) - FAULT (XACT)
1s maximized by choosing
X = 1000 * square-root (F)

Figure 7 plots the expected number of faults 1in both sys-
tems for various buffer sizes with this value for X As
can be seen, the accelerator loses only when there 15 a
mniscule amount of buffer space or when there 1s nearly
enough to hold the whole log Moreover

s1ze (XACT) = square-root (F) * size (LOG)
and if
B = size (XACT)
then the fault probability 1s lowered from
FAULT (LOG) = 1 - square-root (F)
to

A
1+/F
l
Log
JF XACT
o > >

o/F Q

Figure 7 Expected number of faults versus buffer size

FAULT (XACT) = square-root (F)

If F = 01, then buffer requirements are reduced by a
factor of 10 and FAULT from 9 to 1 Even when F =
1, XAGT requires only one-third the buffer space, and
cuts the fault probability 1n half
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5.3.5 Transaction Management

If a crash 1s observed for which the disk-based data-
base 1s intact, then all the recovery system must do 1s
advance T2 to be equal to T1 marking all transactions 1n
progress at the time of the crash “aborted” After this
step, normal processing can commence It 1s expected
that recovery from “soft” crashes will be essentially
instantaneous

Protection from the perils of “hard” crashes, 1e ones
for which the disk 18 not 1ntact will be provided by mir-
roring database files on magnetic disk either on a volume
by volume basis in hardware or on a file by file basis 1n
software

We envison a conventional two phase lock manager
T T and N

handhnge road and wem Tan alane
ana v

uaudl“‘lg read aﬂd write lu\.ks ai0iig 'v'v’l‘l;h i, 4
locks It 18 expected that R and W locks will be placed in
a conventional main memory lock table, while other
locks will reside in data records The only extension
which we expect to implement 1s “object locking ” In this
situation, a user can declare that his stored procedures
are to be executed with no locking at all Of course, if
two uses attempt to execute a stored procedure at the
same time, one will be blocked because the first executor
will place a write lock on the executed tuple In this
way, 1f a collection of users 15 willing to guarantee that
there are no “blind” accesses to the pieces of objects (by
someone directly accessing relations containing them),
then they can be guaranteed consistency by the place-
ment of normal read and write locks on procedural
objects and no locks at all on the component objects

536 Access Methods

We expect to implement both B-tree and OB-tree
[STON83b] secondary indexes Moreover, our ADT facil-
ity supports an arbitrary collection of user defined
indexes Each such index 1s, 1n reality, a pair of indexes
one for magnetic disk records and one for archival
records The first index 1s of the form

index-relation (user-key-or-keys, pointer-to-tuple)
and uses the same structure as current INGRES
secondary indexes The second index will have pointers
to archival tuples and will add “tmin” and “tmax” to
whatever user keys are declared With this structure,
records satisfying the qualhfication

where relation key = value

will be interpreted to mean
where (relation[“now”} key = value)

and will require searching only the magnetic disk index
General queries of the form

where relation[T] key = value

will require searching both the magnetic disk and the
archival index Both indexes need only search for
records with qualifying keys, moreover the archival
mdex can further restrict the search using tmax and
tmin

Any POSTQUEL replace command will insert a new
data record with an appropriate BXID and tmn, and
then insert a record into all key indexes which are
defined, and lastly change tmax on the record to be
updated A POSTQUEL append will only perform the
first and third steps while a delete only performs the
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second step Providing a pointer from the old tuple to
/S B v [ I e i e o TaYals "ok o ) nl o BRI, . Y
ule new tupleé wouia dliow rudilunnd U0 1nserv recoras
only into indexes for keys that are modified This optimi-
zation saves many disk writes at some expense 1n run-
time complexity We plan to implement this optimiza-
tion

The implementor of a new access method structure
need only keep 1n mind that the new data record must be
forced from main memory before any index records (or
the index record will point to garbage) and that multiple
index updates (eg page splits) must be forced in the
correct order (1 e from leaf to root) This 1s easily accom-
plhished with a single low level command to the buffer
manager

order pagel, page2

Inopportune crashes may leave an access method which
consists of a multi-level tree with danglhing index pages
(1e pages that are not pointed two from anywhere else
1n the tree) Such crashes may also leave the heap with
uncommitted data records that cannot be reached from
some 1ndexes Such dangling tuples will be garbage col-
lected by the vacuum process because they will have
EXID equal to not committed Unfortunately if dangling
data records are not recorded 1n any index, then a sweep
of memory will be periodicaly required to find them
Dangling index pages must be garbage collected by con-
ventional techniques

Ordered relations pose a special problem 1n our
environment, and we propose to change OB trees shghtly
to cope with the situation In particular, each place
there 18 a counter 1n the original proposal [STON83b]
indicating the number of descendent tuple-identifiers, the
counter must be replaced by the following

counter-1 same as counter
flag the danger it

Any nserter or deleter 1n an OB tree will set the danger
flag whenever he updates counter-1 Any OB tree acces-
sor who reads a data item with the danger flag set must
interrupt the algorithm and recompute counter-1 (by des-
cending the tree) Then he reascends updating counter-1
and resetting the flag After this interlude, he continues
with his computation In this way the next transaction
“fixes up” the structure left danglhng by the previous
mserter or deleter, and OB-trees now work correctly

537. Vacuuming the Disk

Any record with BXID and EXID of committed can
be written to an optical disk or other long term reposi-
tory Moreover, any records with an BXID or EXID
corresponding to an aborted transaction can be discarded
The job of a “vacuum” demon 1s to perform these two
tasks Consequently, the number of magnetic disk
records 1s nearly equal to the number with EXID equal
to null 1 e the magnetic disk holds the current “state” of
the database) The archival store holds historical
records, and the vacuum demon can ensure that ALL
archival records are valid Hence, the run-time
POSTGRES system need never check for the validity of
archived records

The vacuum process will first write a historical
record to the archival store, then insert a record in the
IID archival index, then insert a record in any archival
key 1ndexes, then delete the record from magnetic disk



storage, and finaly delete the record from any magnetic
disk indexes If a crash occurs, the vacuum process can
simply begin at the start of the sequence again

If the vacuum process promptly archives historical
records, then one requires disk space for the currently
valid records plus a small portion of the historical
records (perhaps about 1 2 times the size of the currently
valid database) Additionally, one should be able to
maintain good physical clustering on the attribute for
which ordering 1s being attempted on the magnetic disk
data set because there 1s constant turnover of records

Some users may wish recently updated records to
remain on magnetic disk To accomplish this tuning, we
propose to allow a user to instruct the vacuum as follows

vacuum rel-name where QUAL
A reasonable qualification might be

vacuum rel-name where rel-name tmax
< now - 20 days

In this case, the vacuum demon would not remove
records from the magnetic disk representation of rel-
name until the qualification became true

53.8. Version Management

Versions will be implemented by allocating a
differential file [SEVR76] for each separate version The
dafferential file will contain the tuples added to or sub-
tracted from the base relation Secondary indexes will be
built on versions to correspond to those on the base rela-
tion from which the version is constructed

The algorithm to process POSTQUEL commands on
versions 18 to begin with the differential relation
corresponding to the version itself For any tuple which
satisfies the qualification, the v-IID of the inspected tuple
must be remembered on a list of “seen IID's” [WOOD83]
If a tuple with an IID on the “seen-1d” list 1s encoun-
tered, then it 1s discarded As long as tuples can be
inspected 1n reverse chronological order, one will always
notice the latest version of a tuple first, and then know to
discard earlier tuples If the version 1s built on top of
another version, then continue processing 1n the
differential file of the next version Ultimately, a base
relation will be reached and the process will stop

If a tuple 1n a version 1s modified 1n the current ver-
sion, then 1t 1s treated as a normal update If an update
to the current version modifies a tuple in a previous ver-
sion or the base relation, then the IID of the replaced
tuple will be placed in the v-IID field and an appropriate
tuple inserted into the differential file for the version
Deletes are handled in a similar fashion

To merge a version into a parent version then one
must perform the following steps for each record in the
new version vald at time T

1) if 1t 18 an 1nsert, then 1nsert record into
older version

2) 1f 1t 15 a delete, then delete the record in
the older version

3) 1f 1t 18 a replace, then do an insert and a
delete

There 1s a conflict 1if one attempts to delete an already
deleted record Such cases must be handled external to

the algorithm The tactics in [GARC84] may be helpful
in reconciling these conflicts

An older version can be rolled forward into a newer
version by perforring the above operations and then
renaming the older version

6 SUMMARY

POSTGRES proposes to support complex objects by
supporting an extendible type system for defining new
columns for relations, new operators on these columns,
and new access methods This facility 1s appropriate for
fairly “simple” complex objects More complex objects,
espectally those with shared subobjects or multiple levels
of nesting, should use POSTGRES procedures as therr
definition mechanism Procedures will be optimized by
caching compiled plans and even answers for retrieval
commands

Triggers and rules are supported as commands with
“always” and “demand” modifiers They are efficiently
supported by extensions to the locking system Both for-
ward chaining and backward chaining control structures
are provided within the data manager using these
mechanisms Qur rules system should prove attractive
when there are multiple rules which might apply n any
given situation

Crash recovery 1s simplified by not overwriting data
and then vacuuming tuples to an archive store The new
storage system 1s greatly simplified from current technol-
ogy and supports time-oriented access and versions with
Iittle difficulty The major cost of the storage system 1s
the requirement to push dirty pages of data to stable
storage at commt time

An optical disk 1s used effectively as an archival
medium, and POSTGRES has a collection of demons run-
ning m the background These can effectively utilize
otherwise 1dle processors Custom hardware could
effectively provide stable main memory, support for the
LOG relation, and support for run-time checking of tuple
vahdity

Lastly, these goals are accomplished with no
changes to the relational model at all At the current
time coding of POSTGRES 1s just beginning We hope to
have a prototype running in about a year
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