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Abstract 

This paper presents the prehmmary design of a new 
database management system, called POSTGRES, that IS 
the successor to the INGRES relational database system 
The mam design goals of the new system are to 

1) provide better support for complex ObJects, 

2) provide user extendlblhty for data types, opera- 
tors and access methods, 

3) provide facilities for active databases (1 e , alert- 
ers and triggers) and lnferencing including 
forward- and backward-chalnmg, 

4) simplify the DBMS code for crash recovery, 

5) produce a design that can take advantage of optl- 
cal disks, workstations composed of multiple 
tightly-coupled processors, and custom designed 
VLSI chips, and 

6) make as few changes as possible (preferably 
none) to the relatlonal model 

The paper describes the query language, programmmg 
langauge interface, system architecture, query processrng 
strategy, and storage system for the new system 

1 INTRODUCTION 

The INGRES relational database management sys- 
tem (DBMS) was implemented durmg 1975-1977 at the 
Umverislty of Califorma Since 1978 varloub prototype 
extensions have been made to support dlstrlbuted data- 
bases [STON83al, ordered relations [STON83b], abstract 
data types [STON83c], and QUEL as a data type 
[STON84aJ In addition, we proposed but never proto- 
typed a new application program interface [STON84b] 
The Umverslty of California version of INGRES has been 
“hacked up enough” to make the mcluslon of substantial 
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new function extremely difficult Another problem wth 
contlnumg to extend the existing system 1s that many of 
our proposed ideas would be difficult to integrate into 
that system because of earlier design decisions Conse- 
quently, we are bullchng a new database system, called 
POSTGRES (POST mGRES) 

This paper describes the design ratlonale, the 
features of POSTGRES, and our proposed lmplementa- 
tlon for the system The next section discusses the 
design goals for the system Sections 3 and 4 presents 
the query language and programming language mter- 
face, respectively, to the system Section 5 describes the 
system architecture lncludmg the process structure, 
query processing strategies, and storage system 

2 DISCUSSION OF DESIGN GOALS 

The relational data model has proven very success- 
ful at solving most business data processing problems 
Many commercial systems are being marketed that are 
based on the relational model and m time these systems 
will replace older technology DBMS’s However, there 
are many engineering applications (e g , CAD systems, 
programming environments, geographic data, and graph- 
ics) for which a conventional relational system 1s not 
suitable We have embarked on the design and lmple- 
mentation of a new generation of DBMS’s, based on the 
relational model, that will provide the facilltles required 
by these apphcatlons This sectlon describes the maJor 
design goals for this new system 

The first goal 1s to support complex obJects [LORI83, 
STON83cl Engineering data, in contrast to business 
data, 1s more complex and dynamic Although the 
required data types can be simulated on a relational sys- 
tem, the performance of the applications IS unacceptable 
Consider the following simple example The objective IS 
to store a collection of geographic obJects in a database 
(e g , polygons, lines, and circles) In a conventional rela- 
tional DBMS, a relation for each type of ObJect with 
appropriate fields would be created 

POLYGON (id, other fields) 
CIRCLE (id, other fields) 
LINE (id, other fields) 

To display these obJects on the screen would require 
additional information that represented display charac- 
terlstlcs for each object (e g , color, position, scaling fac- 
tor, etc) Because this mformation IS the same for all 
obJects, it can be stored in a smgle relation 
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DISPLAY( color, posltlon, scaling, obJ-type, obJect-id) 

The “object-id” field 1s the identifier of a tuple m a rela- 
tion ldentlfied by the “obJ-type” field (1 e, POLYGON, 
CIRCLE, or LINE) Given thrs representation, the fol- 
lowing commands would have to be executed to produce a 
display 

foreach OBJ m {POLYGON, CIRCLE, LINE} do 
range of 0 1s OBJ 
range of D 1s DISPLAY 
retrieve (D all, 0 all) 
where D obJe&id = 0 id 
and D obJ-type = OBJ 

Unfortunately, this collection of commands ~111 not be 
executed fast enough by any relational system to “paint 
the screen” in real time (I e, one or two seconds) The 
problem 1s that regardless of how fast your DBMS IS 
there are too many queries that have to be executed to 
fetch the data for the obJect The feature that 1s needed 
IS the ability to store the obJect m a field m DISPLAY so 
that only one query 1s required to fetch It Consequently, 
our first goal 1s to correct this deficiency 

The second goal for POSTGRES 1s to make It easier 
to extend the DBMS so that it can be used in new apph- 
cation domains A conventional DBMS has a small set of 
built-m data types and access methods Many apphca- 
tlons require speclahzed data types (e g , geometlc data 
types for CAD/CAM or a latitude and longtude posItIon 
data type for mapping applrcatlons) While these data 
types can be simulated on the built-m data types, the 
resulting queries are verbose and confusing and the per- 
formance can be poor A simple example using boxes 1s 
presented elsewhere [STONSG] Such applications would 
be best served by the ability to add new data types and 
new operators to a DBMS Moreover, B-trees are only 
appropriate for certain kinds of data, and new access 
methods are often required for some data types For 
example, K-D-B trees [ROB1811 and R-trees [GUTM84] 
are appropriate access methods for point and polygon 
data, respectively 

Consequently, our second goal 1s to allow new data 
types, new operators and new access methods to be 
included in the DBMS Moreover, It IS crucial that they 
be implementable by non-experts which means easy-to- 
use interfaces should be preserved for any code that ~111 
be written by a user Other researchers are pursuing a 
similar goal [DEWI 

The third goal for POSTGRES IS to support active 
databases and rules Many apphcatlons are most easily 
programmed using alerters and triggers For example, 
form-flow applications such as a bug reportmg system 
require active forms that are passed from one user to 
another [TSICSS, ROWE821 In a bug report appllcatlon, 
the manager of the program mamtenance group should 
be notified If a high prlorlty bug that has been assigned 
to a programmer has not been fixed by a specified date 
A database alerter IS needed that will send a message to 
the manager calling his attention to the problem 
Triggers can be used to propagate updates m the data- 
base to mamtam consistency For example, deletmg a 
department tuple m the DEPT relation might trigger an 
update to delete all employees m that department m the 
EMP relation 

In addition, many expert system applications 

operate on data that IS more easily described as rules 
rather than as data values For example, the teaching 
load of professors m the EECS department can be 
described by the followmg rules 

1) The normal load IS 8 contact hours per year 

2) The schedulmg officer gets a 25 percent reduction 

3) The chairman does not have to teach 

4) Faculty on research leave receive a reduction 
proportional to their leave fraction 

5) Courses with less than 10 students generate 
credit at 0 1 contact hours per student 

6) Courses with more than 50 students generate 
EXTRA contact hours at a rate of 0 01 per stu- 
dent m excess of 50 

7) Faculty can have a credit balance or a deficit of 
up to 2 contact hours 

These rules are subject to frequent change The leave 
status, course assignments, and admmlstrahve assign- 
ments (e g, chairman and scheduling officer) all change 
frequently It would be most natural to store the above 
rules in a DBMS and then infer the actual teaching load 
of mdlvldual faculty rather than stormg teaching load as 
ordinary data and then attempting to enforce the above 
rules by a collection of complex integrity constraints 
Consequently, our third goal 1s to support alerters, 
triggers, and general rule processing 

The fourth goal for POSTGRES IS to reduce the 
amount of code m the DBMS written to support crash 
recovery Most DBMS’s have a large amount of crash 
recovery code that IS tricky to write, full of special cases, 
and very difficult to test and debug Because one of our 
goals IS to allow user-defined access methods, it IS 
imperative that the model for crash recovery be as am- 
ple as possible and easily extendible Our proposed 
approach IS to treat the log as normal data managed by 
the DBMS which will simplify the recovery code and 
simultaneously provide support for access to the hlstorl- 
cal data 

Our next goal 1s to make use of new technologies 
whenever possible Optical disks (even wrltable optical 
disks) are becoming available In the commercial market- 
place Although they have slower access characterlstlcs, 
their price-performance and rellabl1lt.y may prove attrac- 
tive A system design that mcludes optical disks in the 
storage hierarchy will have an advantage Another tech- 
nology that we forsee 1s workstation-sized processors 
with several CPU’s We want to design POSTGRES m 
such way as to take advantage of these CPU resources 
Lastly, a design that could utlhze special purpose 
hardware effectively might make a convmcmg case for 
designing and implementing custom designed VLSI 
chtps Our fifth goal, then, IS to investigate a design that 
can effectively ubhze an optical disk, several tightly cou- 
pled processors and custom designed VLSI chips 

The last goal for POSTGRES 1s to make as few 
changes to the relational model as possible First, many 
users m the busmess data processing world will become 
famlhar with relational concepts and this framework 
should be preserved If possible Second, we belleve the 
original “spartan slmphclty” argument made by Codd 
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[CODD701 IS as true today as in 1970 Lastly, there are 
many semantic data models but there does not appear to 
be a small model that will solve everyone’s problem For 
example, a generahzatlon hierarchy ~111 not solve the 
problem of structurmg CAD data and the design models 
developed by the CAD commumty will not handle gen- 
erahzatlon hlerarchles Rather than bulldmg a system 
that 1s based on a large, complex data model, we believe 
a new system should be built on a small, simple model 
that IS extendible We believe that we can accomplish 
our goals while preservmg the relational model Other 
researchers are striving for similar goals but they are 
using different approaches [AFSASB, ATK184, COPEM, 
DERR85, LOR183, LUM85] 

The remainder of the paper describes the design of 
POSTGRES and the basic system architecture we pro- 
pose to use to implement the system 

3. POSTQUEL 
This section describes the query language supported 

by POSTGRES The relational model as described m the 
orlgnal definition by Codd [CODD701 has been 
preserved A database 1s composed of a collection of rela- 
tions that contain tuples with the same fields defined, 
and the values m a field have the same data type The 
query language 1s based on the INGRES query language 
QUEL [HELD751 Several extensions and changes have 
been made to QUEL so the new language IS called POST- 
QUEL to dlstmgulsh it from the original language and 
other QUEL extensions described elsewhere [STON85a, 
KUNG841 

Most of QUEL 1s left intact The followng com- 
mands are included m POSTQUEL without any changes 
Create Relation, Destroy Relation, Append, Delete, 
Replace, Retrieve, Retrieve into Result, Define View, 
Define Integrity, and Define Protectlon The Modify com- 
mand which specified the storage structure for a relation 
has been omitted because all relations are stored m a 
particular structure designed to support hlstorlcal data 
The Index command IS retained so that other access 
paths to the data can be defined 

Although the basic structure of POSTQUEL 1s very 
similar to QUEL, numerous extensions have been made 
to support complex obJects, user-defined data types and 
access methods, time varying data (1 e, versions, 
snapshots, and historical data), iteration queries, alert- 
ers, triggers, and rules These changes are described In 
the subsections that follow 

3 1 Data Definition 
The followmg built-m data types are provided, 

1) integers, 

2) floating point, 

3) fixed length character strings, 

4) unbounded varying length arrays of fixed types 
urlth an arbitrary number of dimensions, 

5) POSTQUEL, and 

6) procedure 

Scalar type fields (e g , integer, floating point, and fixed 
length character strmgs) are referenced by the conven- 

tlonal dot notation (e g , EMP name) 

Variable length arrays are provided for applications 
that need to store large homogenous sequences of data 
(e g , signal processing data, image, or voice) Fields of 
this type are referenced in the standard way (e g, 
EMPplcture[lJ refers to the I-th element of the picture 
array) A special case of arrays 1s the text data type 
which 1s a one-dimensional array of characters Note 
that arrays can be extended dynamically 

Fields of type POSTQUEL contain a sequence of 
data mampulatlon commands They are referenced by 
the conventlonal dot notation However, 9 a POSTQUEL 
field contains a retrieve command, the data specified by 
that command can be rmpllcltly referenced by a multiple 
dot notation (e g , EMP hobbles battmgavg) as proposed 
elsewhere [STON84al and first suggested by Zamolo m 
GEM [ZANISBI 

Fields of type procedure contain procedures written 
in a general purpose programming language with embed- 
ded data mampulatlon commands (e g, EQUEL 
[ALLM761 or Rlgel [ROWE7911 Fields of type procedure 
and POSTQUEL can be executed using the Execute com- 
mand Suppose we are even a relation with the follow- 
ing definition 

EMP(name, age, salary, hobbles, dept) 

in which the “hobbles” field 1s of type POSTQUEL That 
is, “hobbles” contains queries that retrieve data about 
the employee’s hobbles from other relations The follow- 
ing command will execute the queries m that field 

execute (EMP hobbles) 
where EMP name = “Smith” 

The value returned by this command can be a sequence 
of tuples with varying types because the field can contain 
more than one retrieve command and different com- 
mands can return different types of records Conse- 
quently, the programming language interface must pro- 
vide faclhtles to determine the type of the returned 
records and to access the fields dynamically 

Fields of type POSTQUEL and procedure can be 
used to represent complex objects with shared subobJects 
and to support multiple representations of data Exam- 
ples are given in the next section on complex obJects 

In addition to these built-m data types, user-defined 
data types can be defined using an interface similar to 
the one developed for ADT-INGRES [STON83c, 
STON861 New data types and operators can be defined 
with the user-defined data type facility 

3 2. Complex ObJects 
This section describes how fields of type POSTQUEL 

and procedure can be used to represent shared complex 
obJects and to support multiple represent&Ions of data 

Shared complex objects can be represented by a field 
of type POSTQUEL that contains a sequence of com- 
mands to retrieve data from other relations that 
represent the subobJects For example, given the rela- 
tions POLYGON, CIRCLE, and LINE defined above, an 
obJect relation can be defined that represents complex 
objects composed of polygons, circles, and lines The 
definition of the obJect relation would be 

create OBJECT (name = char[lO], obJ = postquel) 

The table in figure 1 shows sample values for this rela- 
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tlon The relation contains the descrlptlon of two com- 
plex objects named “apple” and “orange” The obJect 
“apple” IS composed of a polygon and a circle and the 

Name OBJ 
apple retrieve (POLYGON all) 

where POLYGON id = 10 
retrieve (CIRCLE all) 
where CIRCLE Id = 40 

orange retrieve (LINE all) 
where LINE id = 17 
retrieve (POLYGON all) 
where POLYGON Id = 10 

Figure 1 Example of an OBJECT relation 

obJect “orange” 1s composed of a line and a polygon 
Notice that both obJecta share the polygon with Id equal 
to 10 

Multiple representations of data are useful for cach- 
mg data m a data structure that IS better sulted to a par- 
ticular use while still retammg the ease of access via a 
relational representation Many examples of this use are 
found m database systems (e g , mam memory relation 
descriptors) and forms systems [ROWE851 Multiple 
represent&Ions can be supported by defining a procedure 
that translates one representation (e g , a relatIona 
represent&on) to another representation (e g , a display 
list suItable for a graphics display) The translation pro- 
cedure 1s stored m the database Contmumg with our 
complex object example, the OBJECT relation would 
have an addItIona field, named “display,” that would 
contain a procedure that creates a display list for an 
obJect stored m POLYGON, CIRCLE, and LINE 

create OBJECT(name=char[lOl, obJ=postquel, 
display =cproc) 

The value stored in the display field IS a procedure writ- 
ten m C that queries the database to fetch the subobjects 
that make up the obJect and that creates the display list 
representation for the object 

This solution has two problems the code IS repeated 
m every OBJECT tuple and the C procedure replicates 
the queries stored m the object field to retrieve the 
subobjects These problems can be solved by storing the 
procedure m a separate relation (1 e , normahzmg the 
database design) and by passmg the obJect to the pro- 
cedure as an argument The defimtlon of the relation m 
which the procedures will be stored 1s 

create OBJPROC(name=char[l21, proc=cproc) 
append to OBJPROC(name=“dlsplay-list”, 

proc = ” source code “) 

Now, the entry m the display field for the “apple” object 
1s 

execute (OBJPROC proc) 
with (“apple”) 
where OBJPROC name =“dlsplay-hst” 

This command executes the procedure to create the alter- 
native representation and passes to It the name of the 

ObJect Notice that the “display” field can be changed to 
a value of type POSTQUEL because we are not stormg 
the procedure in OBJECT, only a command to execute 
the procedure At this pomt, the procedure can execute a 
command to fetch the data Because the procedure was 
passed the name of the obJect it can execute the followmg 
command to fetch its value 

execute (OBJECT obJ) 
where OBJECT name=argument 

This solution IS somewhat complex but it stores only one 
copy of the procedure’s source code m the database and it 
stores only one copy of the commands to fetch the data 
that represents the obJect 

Fields of type POSTQUEL and procedure can be 
efficiently supported through a combmatlon of complla- 
tlon and precomputatlon described m sectlons 4 and 5 

3 3 Time Varying Data 
POSTQUEL allows users to save and query hIstorI- 

cal data and versions [KATZ@, WOOD831 By default, 
data m a relation IS never deleted or updated Conven- 
tional retrievals always access the current tuples m the 
relation Hlstorlcal data can be accessed by mdlcatmg 
the desired time when defining a tuple variable For 
example, to access hlstorlcal employee data a user writes 

retrieve (E all) 
from E m EMPr7 January 1985”l 

which retrieves all records for employees that worked for 
the company on 7 January 1985 The From-clause which 
IS similar to the SQL mechamsm to define tuple varl- 
ables [ASTR76], replaces the QUEL Range command 
The Range command was removed from the query 
language because it defined a tuple variable for the dura- 
tion of the current user program Because queries can be 
stored as the value of a field, the scope of tuple variable 
defimtlons must be constramed The From-clause makes 
the scope of the defimtlon the current query 

This bracket notation for accessmg hIstorIca data 
lmphcltly defines a snapshot [ADIBBO] The lmplementa- 
tlon of queries that access this snapshot, described m 
detail m sectlon 5, searches back through the history of 
the relation to find the appropriate tuples The user can 
materlallze the snapshot by executing a Retrieve-into 
command that will make a copy of the data m another 
relation 

Apphcatlons that do not want to save historical data 
can specify a cutoff pomt for a relation Data that IS 
older than the cutoff point IS deleted from the database 
Cutoff pomts are defined by the Discard command The 
command 

discard EMP before “1 week” 

deletes data In the EMP relation that 1s more than 1 
week old The commands 

discard EMP before “now” 

and 
discard EMP 

retain only the current data In EMP 
It I’s also possible to write queries that reference 

data which 1s valid between two dates The notation 

relation-nametdatel, date21 
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specifies the relation contammg all tuples that were m 
the relation at some time between date1 and date2 
Either or both of these dates can be omitted to specify all 
data In the relation from the time it was created until a 
fixed date (1 e , relation-name[,date]), all data in the rela- 
tion from a fixed date to the present (1 e, relatlon- 
name[date,l), or all data that was every m the relation 
(1 e , relation-namer 1) For example, the query 

retrieve (E all) 
from E m EMP[ ] 
where E name =“Smlth” 

returns all lnformatlon on employees named Smith who 
worked for the company at any time 

POSTQUEL has a three level memory hierarchy 1) 
main memory, 2) secondary memory (magnetic disk), and 
3) tertiary memory (optical disk) Current data 1s stored 
in secondary memory and hlstorlcal data migrates to ter- 
tiary memory However, users can query the data 
without havmg to know where the data 1s stored 

Finally, POSTGRES provides support for versions 
A version can be created from a relation or a snapshot 
Updates to a version do not modify the underlying rela- 
tlon and updates to the underlylng relation will be VISI- 
ble through the version unless the value has been 
modified in the version Versions are defined by the 
NewversIon command The command 

newversion EMPTEST from EMP 

creates a version named EMPTEST that 1s derived from 
the EMP relation If the user wants to create a version 
that 1s not changed by subsequent updates to the under- 
lying relation as m most source code control systems 
[TICH821, he can create a version off a snapshot 

A Merge command IS provided that will merge the 
changes made in a version back Into the underlying rela- 
tion An example of a Merge command 1s 

merge EMPTEST into EMP 

The Merge command will use a semi-automatic pro- 
cedure to resolve updates to the underlymg relation and 
the version that conflict [GARC841 

This section described POSTGRES support for time 
varying data The strategy for Implementing these 
features IS described below in the section on system 
architecture 

3 4. Iteration Queries, Alerters, Triggers, and 
Rules 

This sectlon describes the POSTQUEL commands 
for specifying iterative execution of queries, alerters 
[BUNE791, triggers [ASTR761, and rules 

Iterative queries are requried to support transitive 
closure [GUTM84 KUNG841 Iteration IS specified by 
appending an asterisk (“*“) to a command that should be 
repetitively executed For example, to construct a rela- 
tlon that includes all people managed by someone either 
directly or Indirectly a Retrieve*-Into command 1s used 
Suppose one 1s given an employee relation with a name 
and manager field 

create EMP(name=char[201, ,mgr=char[201, ) 

The followmg query creates a relation that conatlns all 
employees who work for Jones 

retrieve* into SUBORDINATES(E name, E mgr) 
from E In EMP, S in SUBORDINATES 
where E name =“Jones” 

or E mgr=S name 

This command continues to execute the Retrieve-into 
command unkl there are no changes made to the 
SUBORDINATES relation 

The “*” modifier can be appended to any of the 
POSTQUEL data manlpulatlon commands Append, 
Delete, Execute, Replace, Retrieve, and Retrieve-Into 
Complex Iterahons, like the A-* heurlstlc search algo- 
rithm, can be specified using sequences of these lterakon 
queries [STON85bl 

Alerters and triggers are specified by adding the 
keyword “always” to a query For example, an alerter 1s 
specified by a Retrieve command such as 

retrieve always (EMP all) 
where EMP name = “Bill” 

This command returns data to the apphcatlon program 
that issued it whenever Bill’s employee record IS 
changed ’ A trigger IS an update query (I e, Append, 
Replace, or Delete command) with an “always” keyword 
For example, the command 

delete always DEPT 
where count(EMP name by DEPT dname 

where EMPdept = DEPTdname) = 0 

defines a trigger that ~111 delete DEPT records for 
departments with no employees 

Iteration queries differ from alerters and triggers m 
that lteratlon queries run until they cease to have an 
effect while alerters and triggers run mdefinltely An 
efficient mechamsm to awaken “always” commands 1s 
described m the system architecture sectlon 

“Always” commands support a forward-chaining 
control structure m which an update wakes up a collec- 
tlon of alerters and triggers that can wake up other com- 
mands This process termmates when no new commands 
are awakened POSTGRES also provides support for a 
backward-chammg control structure 

The conventional approach to supportmg inference 
IS to extend the view mechamsm (or something 
equivalent) with additional capabllltles (e g [ULLM85, 
WONG84, JARK851) The canomcal example IS the 
definition of the ANCESTOR relation based on a stored 
relation PARENT 

PARENT (parent-of, offspring) 

Ancestor can then be defined by the followmg commands 

range of P IS PARENT 
range of A IS ANCESTOR 
define view ANCESTOR (P all) 
define view* ANCESTOR (A parent-of, P offsprmg) 

where A offsprmg = P parent-of 

Notice that the ANCESTOR view 1s defined by multiple 
commands that may Involve recursion A query such as 

retrieve (ANCESTOR parent-of) 
where ANCESTOR offsprmg = “Bill” 

’ Stnctly speakmg the data 1s returned to the program 
through a portal which IS defined m sectlon 4 
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IS processed by extensions to a standard query 
modlficatlon algorithm [STON751 to generate a recursive 
command or a sequence of commands on stored relations 
To support this mechanism, the query optimizer must be 
extended to handle these commands 

This approach works well when there are only a few 
commands which define a particular view and when the 
commands do not generate confllctlng answers This 
approach 1s less successful if either of these condltlons IS 
vlolated as m the followmg example 

define view DESK-EMP (EMP all, desk = “steel”) 
where EMP age < 40 

define view DESK-EMP (EMP all, desk = “wood” 
where EMP age > = 40 

define view DESK-EMP (EMP all, desk = “wood”) 
where EMP name = “hotshot” 

define view DESK-EMP (EMP all, desk = “steel”) 
where EMP name = “bigshot” 

In this example, employees over 40 get a wood desk, 
those under 40 get a steel desk However, “hotshot” and 
“bigshot” are exceptions to these rules “Hotshot” IS 
given a wood desk and “blgshot” IS given a steel desk, 
regardless of their ages In this case, the query 

retrieve (DESK-EMP desk) where DESK-EMP name 
= “blgshot” 

will require 4 separate commands to be optimized and 
run Moreover, both the second and the fourth 
defimtlons produce an answer to the query that IS 
different In the case that a larger number of view 
definltlons IS used in the specification of an obJect, then 
the important performance parameter will be isolating 
the view definltlons which are actually useful Moreover, 
when there are confhctlng view definitions (e g the gen- 
eral rule and then exceptional cases), one requires a 
priority scheme to decide which of confhctmg defimtlons 
to utlhze The scheme described below works well in such 
situations 

POSTGRES supports backward-chaining rules by 
virtual columns (1 e , columns for which no value IS 
stored) Data m such columns IS inferred on demand 
from rules and cannot be directly updated, except by 
adding or droppmg rules Rules are specified by addmg 
the keyword “demand” to a query Hence, for the 
DESK-EMP example, the EMP relation would have a 
virtual field, named “desk,” that would be defined by four 
rules 

replace demand EMP (desk = “steel”) 
where EMPage < 40 

replace demand EMP (desk = “wood” 
where EMP age > = 40 

replace demand EMP (desk = “wood”) 
where EMP name = “hotshot” 

replace demand EMP (desk = “steel”) 
where EMP name = “bigshot” 

The third and fourth commands would be defined at a 
higher prlorlty than the first and second A query that 
accessed the desk field would cause the “demand” com- 
mands to be processed to determlne the appropriate desk 
value for each EMP tuple retrieved 

This subsection has described a collection of faclh- 
ties provided m POSTQUEL to support complex queries 
k g , lteratlon) and active databases (e g, alerters, 

triggers, and rules) Efficient techmques for lmplement- 
Ing these faclhtles are given m section 5 

PROGRAMMING 
i-ACE 

LANGUAGE INTER- 

This section describes the programmmg language 
m&face (HITCHING POST) to POSTGRES We had 
three objectives when designing the HITCHING POST 
and POSTGRES faclhtles First, we wanted to design 
and implement a mechanism that would slmphfy the 
development of browsing style appllcatlons Second, we 
wanted HITCHING POST to be powerful enough that all 
programs that need to access the database lncludmg the 
ad hoc terminal monitor and any preprocessors for 
embedded query languages could be written with the 
interface And lastly, we wanted to provide faclhtles 
that would allow an application developer to tune the 
performance of his program (1 e , to trade flexlblhty and 
rehablhty for performance) 

Any POSTQUEL command can be executed m a 
program In addition, a mechanism, called a “portal,” 1s 
provided that allows the program to retrieve data from 
the database A portal 1s slmllar to a cursor [ASTR761, 
except that It allows random access to the data specified 
by the query and the program can fetch more than one 
record at a time The portal mechanism described here 
IS different than the one we previously deslgned 
[STON84b], but the goal IS still the same The followmg 
subsectlons describe the commands for defimng portals 
and accessmg data through them and the faclhtles for 
lmprovmg the performance of query execuhon (1 e , com- 
pilation and fast-path) 

4.1. Portals 
A portal 1s defined by a Retrieve-portal or Execute- 

portal command For example, the followmg command 
defines a portal named P 

retrieve portal P(EMP all) 
where EMP age C 40 

This command 1s passed to the backend process which 
generates a query plan to fetch the data The program 
can now issue commands to fetch data from the backend 
process to the frontend process or to change the “current 
poslbon” of the portal The portal can be thought of as a 
query plan In execution In the DBMS process and a 
buffer contalnmg fetched data In the apphcatlon process 

The program fetches data from the backend into the 
buffer by executing a Fetch command For example, the 
command 

fetch 20 Into P 

fetches the first twenty records in the portal into the 
frontend program These records can be accessed by sub- 
script and field references on P For example, P[ll refers 
to the I-th record returned by the last Fetch command 
and P[I] name refers to the “name” field In the l-th 
record Subsequent fetches replace the previously 
fetched data m the frontend program buffer 

The concept of a portal 1s that the data m the buffer 
IS the data currently bemg displayed by the browser 
Commands entered by the user at the termmal are 
translated into database commands that change the data 
In the buffer which 1s then redisplayed Suppose, for 
example, the user entered a command to scroll forward 
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half a screen This command would be translated by the 
frontend program (1 e , the browser) into a Move com- 
mand followed by a Fetch command The following two 
commands would fetch data into the buffer which when 
redisplayed would appear to scroll the data forward by 
one half screen 

move P forward 10 
fetch 20 into P 

The Move command reposltlons the “current posltlon” to 
point to the 11-th tuple m the portal and the Fetch com- 
mand fetches tuples 11 through 30 m the ordering esta- 
blished by executing the query plan The “current posi- 
tlon” of the portal IS the first tuple returned by the last 
Fetch command If Move commands have been executed 
since the last Fetch command, the “current position” IS 
the first tuple that would be returned by a Fetch com- 
mand if it were executed 

The Move command has other varlatlons that slm- 
phfy the implementation of other browsing commands 
Variations exist that allow the portal postion to be 
moved forward or backward, to an absolute posltlon, or to 
the first tuple that satisfies a predicate For example, to 
scroll backwards one half screen, the followmg commands 
are issued 

move P backward 10 
fetch 20 into P 

In addition to keeping track of the “current posltlon,” the 
backend process also keeps track of the sequence number 
of the current tuple so that the program can move to an 
absolute posltlon For example, to scroll forward to the 
63-rd tuple the program executes the command 

move P forward to 63 

Lastly, a Move command 1s provided that ~111 
search forward or backward to the first tuple that 
satisfies a predicate as illustrated by the followmg com- 
mand that moves forward to the first employee whose 
salary is greater than $25,000 

move P forward to salary > 25K 

This command posltlons the portal on the first qualifying 
tuple A Fetch command will fetch this tuple and the 
ones immediately followmg it which may not satisfy the 
predicate To fetch only tuples that satisfy the predicate, 
the Fetch command 1s used as follows 

fetch 20 mto P where salary > 25K 

The backend process will continue to execute the query 
plan until 20 tuples have been found that satisfy the 
predicate or until the portal data 1s exhausted 

Portals differ slgmficantly from cursors m the way 
data 1s updated Once a cursor IS posltloned on a record, 
it can be modified or deleted (I e, updated directly) 
Data m a portal cannot be updated directly It IS 
updated by Delete or Replace commands on the relations 
from which the portal data 1s taken Suppose the user 
entered commands to a browser that change Smith’s 
salary Assuming that Smith’s record 1s already In the 
buffer, the browser would translate this request into the 
following sequence of commands 

replace EMP(salary=NewSalary) 
where EMP name = “Smith” 
fetch 20 into P 

The Replace command modifies Smith’s tuple in the EMP 
relation and the Fetch command synchronizes the buffer 
in the browser with the data in the database We chose 
this mdlrect approach to updating the data because rt 
makes sense for the model of a portal as a query plan 
In our previous formulation [STONMI, a portal was 
treated as an ordered view and updates to the portal 
were treated as view updates We believe both models 
are viable, although the query plan model requires less 
code to be written 

In addition to the Retrieve-portal command, portals 
can be defined by an Execute command For example, 
suppose the EMP relation had a field of type POSTQUEL 
named “hobbles” 

EMP (name, salary, age, hobbles) 

that contained commands to retrieve a person’s hobbles 
from the followmg relations 

SOFTBALL (name, poatlon, batting-avg) 
COMPUTERS (name, Isowner, brand, interest) 

An application program can define a portal that w111 
range over the tuples descrlblng a person’s hobbles as fol- 
lows 

execute portal H(EMP hobbles) 
where EMP name = “Smith” 

This command defines a portal, named “H,” that 1s bound 
to Smith’s hobby records Since a person can have 
several hobbles, represented by more than on Retrieve 
command m the “hobbles” field, the records in the buffer 
may have different types Consequently, HITCHING 
POST must provide routines that allow the program to 
determine the number of fields, and the type, name, and 
value of each field in each record fetched Into the buffer 

4 2. Compdatlon and Fast-Path 
This subsection describes facllltles to improve the 

performance of query execution Two facllltles are pro- 
vided query compllatlon and fast-path Any POSTQUEL 
command, including portal commands, can take advan- 
tage of these facllltles 

POSTGRES has a system catalog m which appllca- 
tlon programs can store queries that are to be compiled 
The catalog 1s named “CODE” and has the followmg 
structure 

CODE(ld, owner, command) 
The “id” and “owner” fields form a unique Identifier for 
each stored command The “command” field holds the 
command that 1s to be compiled Suppose the program- 
mer of the relation browser described above wanted to 
compile the Replace command that was used to update 
the employee’s salary field The program could append 
the command, with sultable parameters, to the CODE 
catalog as follows 

append to CODE(ld = 1, owner =“browser”, 
command =“replace EMP(salary = $1) 

where EMP name = $2”) 

“$1” and “$2” denote the argumenta to the command 
Now, to execute the Replace command that updates 
Smith’s salary shown above, the program executes the 
followmg command 
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execute (CODE command) 
‘~nth (NewSalary, “Smith”) 
where CODE id= 1 and CODE owner =“browser” 

This command executes the Replace command after sub- 
stltutlng the arguments 

Executing commands stored m the CODE catalog 
does not by itself make the command run any faster 
However, a compllatlon demon 1s always executing that 
examines the entries m the CODE catalog m every data- 
base and complies the queries Assuming the complla- 
tlon demon has compiled the Replace command in CODE, 
the query should run substantially faster because the 
time to parse and optmuze the query 1s avoided Section 
5 describes a general purpose mechanism for mvahdatmg 
complied queries when the schema changes 

Compiled queries are faster than queries that are 
parsed and optimized at run-time but for some apphca- 
tlons, even they are not fast enough The problem 1s that 
the Execute command that mvokes the compiled query 
still must be processed Consequently, a fast-path facll- 
lty IS provided that avolds this overhead In the Execute 
command above, the only varlablhty IS the argument list 
and the unique identifier that selects the query to be run 
HITCHING POST has a run-time routine that allows 
this mformatlon to be passed to the backend m a binary 
format For example, the followmg function call Invokes 
the Replace command described above 

exec-fp(1, “browser”, NewSalary, “Smith”) 

This function sends a message to the backend that 
includes only the mformatlon needed to determine where 
each value IS located The backend retrieves the com- 
plled plan (possibly from the buffer pool), substitutes the 
parameters without type checking, and invokes the query 
plan This path through the backend IS hand-optimized 
to be very fast so the overhead t.o invoke a complled 
query plan is minimal 

This subsection has described faclhtles that allow an 
application programmer to improve the performance of a 
program by compllmg queries or by usmg a special fast- 
path facility 

5. SYSTEM ARCHITECTURE 
This section describes how we propose to implement 

POSTGRES The first subsection describes the process 
structure The second subsection describes how query 
processmg w111 be implemented, including fields of type 
POSTQUEL, procedure, and user-defined data type The 
third subsection describes how alerters, triggers, and 
rules will be implemented And finally, the fourth sub- 
section describes the storage system for Implementing 
time varying data 

5.1. Process Structure 
DBMS code must run as a sparate process from the 

apphcatlon programs that access the database m order to 
provide data protection The process structure can use 
one DBMS process per apphcatlon program (I e, a 
process-per-user model [STON811) or one DBMS process 
for all apphcatlon programs (I e, a server model) The 
server model has many performance benefits (e g , shar- 
ing of open file descriptors and buffers and optimized 
task sHrltChmg and message sending overhead) m a large 
machme environment m which high performance 1s crltl- 

cal However, this approach requires that a fairly com- 
plete special-purpose operating system be built In con- 
strast, the process-per-user model IS simpler to imple- 
ment but will not perform as well on most conventional 
operating systems We decided after much soul search- 
ing to implement POSTGRES using a process-per-user 
model architecture because of our limited programming 
resources POSTGRES 1s an ambltlous undertaking and 
we beheve the additional complexity introduced by the 
server architecture was not worth the additional risk of 
not getting the system running Our current plan then 
1s to implement POSTGRES as a process-per-user model 
on Unix 4 3 BSD 

The process structure for POSTGRES IS shown m 
figure 3 The POSTMASTER will contain the lock 
manager (since there are no shared segments m 4 3 BSD) 
and will control the demons that will perform various 
database services (such as asynchronously compllmg user 
commands) There will be one POSTMASTER process 
per machine, and it will be started at “sysgen” time 

The POSTGRES run-time system executes com- 
mands on behalf of one apphcatlon program However, a 
program can have several commands executing at the 
same time The message protocol between the program 
and backend will use a simple request-answer model 
The request message will have a command designator 
and a sequence of bytes that contain the arguments The 
answer message format will include a response code and 
any other data requested by the command Notice that 
in contrast to INGRES [STON’76] the backend will not 

E+iq 
Figure 3 POSTGRES process structure 

“Ioad up” the communlcatlon channel with data The 
frontend requests a bounded amount of data with each 
command 

5.2 Query Processing 
This section describes the query processmg stra- 

tegies that will be implemented In POSTGRES We plan 
to implement a conventional query optimizer However, 
three extensions are required to support POSTQUEL 
First, the query optimizer must be able to take advan- 
tage of user-defined access methods Second, a general- 
purpose, efficient mechamsm IS needed to support fields 
of type POSTQUEL and procedure And third, an 
efficient mechanism IS required to support triggers and 
rules This sectlon describes our proposed lmplementa- 
tlon of these mechamsms 
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5 2 1. Support for New Types 
As noted elsewhere [STON861, exlskng access 

methods must be usable for new data types, new access 
methods must be definable, and query processmg heurts- 
tics must be able to optlmlze plans for which new data 
types and new access methods are present The basic 
idea 1s that an access method can support fast access for 
a specific collection of operators In the case of B-trees, 
these operators are { <, =, >, > =, < =} Moreover, 
these operators obey a collection of rules Again for B- 
trees, the rules obeyed by the above set of operators IS 

PI) key-l < key-2 and key-2 < key-3 
then key-l < key-3 

P2) key-l < key-2 lmphes not key-2 < key-l 
P3) key-l C key-2 or key-2 < key-l 

or key-l = key-2 
p4) key-l < = key-2 if key-l C key-2 

or key-l = key-2 
P5) key-l = key-2 implies key-2 = key-l 
P6) key-l > key-2 if key-2 < key-l 
ET) key-l > = key-2 if key-2 < = key-l 

A B-tree access method ml1 work for any collection of 
operators that obey the above rules The protocol for 
defining new operators will be similar to the one 
described for AJYI’JNGRES [STON83cl Then, a user 
need simply declare the collectlon of operators that are to 
be utlhzed when he builds an Index, and a detalled syn- 
tax 1s presented m ISTON 

In addition, the query optlmlzer must be told the 
performance of the various access paths Followmg 
[SELI79], the required mformatlon wolf be the number of 
pages touched and the number of tuples examined when 
processing a clause of the form 

relation column OPR value 

These two values can be Included with the definltlon of 
each operator, OPR The other lnformatlon required 1s 
the Join selectlvlty for each operator that can partlclpate 
in a Join, and what Join processing strategies are feasible 
In particular, nested iteration 1s always a feasible stra- 
tegy, however both merge;lom and hash-Joln work only In 
restrictive cases For each operator, the optimizer must 
know whether merge-Join 1s usable and, lf so, what 
operator to use to sort each relation, and whether hash- 
Jam IS usable Our proposed protocol includes this mfor- 
matlon with the definition of each operator 

Consequently, a table-driven query optimizer will be 
implemented Whenever a user defines new operators, 
the necessary mformatlon for the optlmlzer ~111 be placed 
in the system catalogs which can be accessed by the 
optlmzler For further details, the reader 1s refered else- 
where [STON861 

5 2 2. Support for Procedural Data 
The main performance tactic which we will utilize IS 

precomputmg and caching the result of procedural data 
This precomputatlon has two steps 

1) compllmg an access plan for POSTQUEL commands 
2) executing the access plan to produce the answer 

When a collection of POSTQUEL commands 1s executed 
both of the above steps must be performed Current 
systems drop the answer on the floor after obtaining It, 
and have special code to invalidate and recompute access 

plans (eg [ASTR761) On the other hand, we expect to 
cache both the plan and the answer For small answers, 
we expect to place the cached value m the field Itself 
For larger answers, we expect to put the answer m a 
relation created for the purpose and then put the name of 
the relation In the field itself where it will serve the role 
of a pointer 

Moreover, we expect to have a demon which ~11 
run m background mode and compile plans utlllzlng oth- 
erwise Idle time or idle processors Whenever a value of 
type procedure 1s inserted Into the database, the run- 
time system will also Insert the identity of the user sub- 
mlttmg the command Compllatlon entalls checking the 
protection status of the command, and this ~111 be done 
on behalf of the submitting user Whenever, a pro- 
cedural field 1s executed, the run-time system will ensure 
that the user IS authorized to do so In the case of “fast- 
path,” the run-time system will require that the execut- 
mg user and defining user are the same, so no run-time 
access to the system catalogs 1s required This same 
demon will also precompute answers In the most for- 
tunate of cases, access to procedural data IS mstantane- 
ous because the value of the procedure 1s cached In 
most cases, a previous access plan should be vahd spar- 
ing the overhead of this step 

Both the compiled plan and the answer must be 
invalidated if necessary The plan must be Invalidated lf 
the schema changes mapproprlately, while the answer 
must be invalidated if data that it accesses has been 
changed We now show that this mvahdatlon can be 
efficiently supported by an extended form of locks In a 
recent paper [STON85cl we have analyzed other alter- 
nate lmplementatlons which can support needed capablll- 
ties, and the one we ml1 now present was found to be 
attractive in many situations 

We propose to support a new kmd of lock, called an 
I lock The compatlblhty matrix for I locks 1s shown in 
figure 4 When a command IS compiled or the answer 
precomputed, POSTGRES will set I locks on all database 
obJects accessed during compllatlon or execution These I 
locks must be persistent (1 e survive crashes), of fine 
granularity (1 e on tuples or even fields), escalatable to 
coarser granularity, and correctly detect “phantoms” 
[ESWA751 In [STON85al, lt 1s suggested that the best 
way to satisfy these goals 1s to place I locks in data 
records themselves 

R W I 

R ok no ok 
W no no * 
I ok no ok 

Figure 4 Compatlblhty modes for I locks 

The * In the table m figure 4 mdlcates that a write 
lock placed on an obJect containing one or more I locks 
~111 simply cause the precomputed obJects holding the I 
Iocks to be mvahdated Consequently, they are called 
“mvalldate-me” locks A user can Issue a command 
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retrieve (relation I) where quallficatlon 

which w111 return the identifiers of commands having I 
locks on tuples m questlon In this way a user can see 
the consequences of a proposed update 

Fields of type POSTQUEL can be compiled and 
POSTQUEL fields with no update statements can be 
precomputed Fields of type procedure can be compiled 
and procedures that do not do mputloutput and do not 
update the database can be precomputed 

5 2.3 Alerters, Triggers, and Inference 
This sectlon describes the tactic we will use to 

implement alerters, triggers, and inference 

Alerters and triggers are specified by including the 
keyword “always” on the command The proposed lmple- 
mentatlon of “always” commands IS to run the command 
until it ceases to have an effect Then, it should be run 
once more and another special kind of lock set on all 
0bJect.s which the commands will read or write These T 
locks have the compatlblhty matrix shown m figure 5 
Whenever a transaction writes a data object on which a 
T-lock has been set, the lock manager simply wakes-up 
the corresponding “always” command Dormant 
“always” commands are stored m a system relation m a 
field of type POSTQUEL As with 1 locks, T locks must 
be persistent, of fine granularity and escalatable More- 
over, the Identity of commands holding T locks can be 
obtained through the special field, T added to all rela- 
tions 

R W I T 

ok no ok ok 
i no no * # 
I ok no ok ok 
T ok no ok ok 

Figure 5 Compatlblhty modes for T locks 

Recall that mferencmg will be support by virtual 
fields (1 e , “demand” commands) “Demand” commands 
will be Implemented slmllar to the way “always” com- 
mands are implemented Each “demand” command 
would be run until the collection of objects which it pro- 
poses to wr1t.e are isolated Then a D lock IS set on each 
such object and the command placed m a POSTQUEL 
field m the system catalogs The compatlblhty matrix for 
D locks IS shown m figure 6 The “82’ mdlcates that 
when a command attempts to read an obJect on which a 
D lock has been set, the “demand” command must be 
substituted into the command bemg executed usmg an 
algorithm slmllar to query modlficatlon to produce a new 
command to execute This new command represents a 
subgoal which the POSTGRES system attempts to 
satisfy If another D lock 1s encountered, a new subgoal 
will result, and the process ~11 only terminate when a 
subgoal runs to completion and generates an answer 

R W I T D 

R ok no ok ok & 
W no no * # no 
I ok no ok ok ok 
T ok no ok ok ok 
D ok no * # ok 

Figure 6 Compatlblhty modes for D locks 

Moreover, this answer can be cached m the field and 
mvahdated when necessary, If the mtermedlate goal 
commands set I locks as they run This process IS a data- 
base version of PROLOG style unification [CLOCSl], and 
supports a backward chalnmg control flow The algo- 
rithm details appear m [STON85b] along with a proposal 
for a priority scheme 

5 3. Storage System 
The database will be partly stored on a magnetic 

disk and partly on an archival medium such as an optical 
disk Data on magnetic disk includes all secondary 
indexes and recent database tuples The optical disk IS 
reserved as an archival store contamIng hlstorlcal tuples 
There will be a demon which “vacuums” tuples from 
magnetic disk to optical disk as a background process 
Data on magnetic disk will be stored using the normal 
UNIX file system with one relation per file The optical 
disk will be organized as one large repository with tuples 
from various relations intermixed 

All relations will be stored as heaps (as m 
[ASTR76]) with an optional collection of secondary 
indexes In addltlon relations can be declared “nearly 
ordered,” and POSTGRES will attempt to keep tuples 
close to sort sequence on some column Lastly, secondary 
indexes can be defined, which consist of two separate 
physlcal indexes one for the magnetic disk tuples and one 
for the optical disk tuples, each m a separate UNIX file 
on magnetic disk Moreover, a secondary Index on ~111 
automatically be provided for all relabons on a unique 
identifier field which 1s described m the next subsection 
This index ullll allow any relation to be sequentially 
scanned 

5 3 1 Data Format 
Every tuple has an immutable umque identifier 

(IID) that 1s assigned at tuple creation time and never 
changes This 1s a 64 bit quanhty assigned internally by 
POSTGRES Moreover, each transaction has a unique 64 
bit transactlon identifier (XACTID) assigned by 
POSTGRES Lastly, there IS a call to a system clock 
which can return timestamps on demand Loosely, these 
are the current time-of-day 

Tuples will have all non-null fields stored adjacently 
in a physical record Moreover, there will be a tuple 
prefix contaming the followmg extra fields 
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IID immutable id of this tuple 
tmin the timestamp at which this tuple 

becomes valid 
BXID the transaction identifier that 

assigned tmm 
tmax the timestamp at which this tuple 

ceases to be valid 
EXID the transaction identifier that 

assigned tmax 
v-IID the Immutable id of a tuple m this 

or some other version 
descriptor descriptor on the front of a tuple 

The descriptor contains the offset at which each non-null 
field starts, and 1s slmllar to the data structure attached 
to System R tuples [ASTR761 The first transaction 
Identifier and timestamp correspond to the tlmestamp 
and ldentlfier of the creator of this tuple When the 
tuple 1s updated, It 1s not overwritten, rather the 
ldentlfier and timestamp of the updating transaction are 
recorded m the second (tlmestamp, transactlon ldentlfier) 
slot and a new tuple IS constructed m the database The 
update rules are described m the followmg subsection 
while the details of version management are deferred to 
later m the sectlon 

5.3.2. Update and Access Rules 
On an insert of a new tuple Into a relation, tmin is 

marked with the tlmestamp of the Inserting transaction 
and its identity IS recorded m BXID When a tuple 1s 
deleted, tmax 1s marked with the tlmestamp of the delet- 
ing transactlon and its identity 1s recorded in EXID An 
update to a tuple IS modelled as an insert followed by a 
delete 

To find all the record which have the qualification, 
QUAL at time T the run time system must find all mag 
netlc disk records such that 

1) tmm < T < tmax and BXID and EXID are 
committed and QUAL 

2) tmm C T and tmax = null and BXID 1s 
committed and QUAL 

3) tmin C T and BXID = committed and EXID 
= not-commltted and QUAL 

Then it must find all optical disk records satisfying 1) A 
special transaction log IS described below that allows the 
DBMS to determine quickly whether a particular tran- 
saction has committed 

5 3 3 The POSTGRES Log and Accelerator 

A new XACTID IS assigned sequentially to each 
new transactlon When a transaction wishes to commit, 
all data pages which it has wrrtten must be forced out of 
memory (or at least onto stable storage) Then a single 
bit IS written into the F’GSTGRES log and an optional 
transaction accelerator 

Consider three transaction identifiers, Tl which IS 
the “youngest” transaction Identifier which has been 
asslgned, T2 which IS a “young” transaction but 
guaranteed to be older than the oldest active transactlon, 
and T3 which IS a “young” transactlon that IS older than 
the oldest committed transaction which wrote data which 
1s still on magnetic disk Assume that Tl-T3 are 

recorded m “secure main memory” to be presently 
described 

For any transactlon with an identifier between Tl 
and T2, we need to know which of three states It IS m 

0 = aborted 
1 = commltted 
2 = in-progress 

For any transaction W&I an identifier between T2 and 
T3, a “2” IS lmposstble and the log can be compressed to 
1 bit per transaction For any transaction older than T3, 
the vacuum process has wrltten all records to archival 
storage During this vacuummg, the updates to all 
aborted transactions can be dmcarded, and hence all 
archival records correspond to commItted transactlons 
No log need be kept for transactions older than T3 

The proposed log structure IS an ordered relation, 
LOG as follows 

lme-ld the access method supplied ordering field 
bit-l[lOOOl a bit vector 
b&2[10001 a second bit vector 

The status of xact number I 1s recorded in bit (remamder 
of I &vlded by 1000) of line-id number l/1000 

We assume that several thousand beta (say lK-1OK 
bytes) of “secure main memory” are available for lo-100 
blocks comprlsmg the “tall” of the log Such main 
memory IS duplexed or trrplexed and supported by an 
umnterruptable power supply The assumed hardware 
structure for this memory 1s the followmg Assume a clr- 
cular “block pool” of n blocks each of size 2000 blta 
When more space IS needed, the oldest block IS reused 
The hardware mamtams a pointer which indicates the 
current largest xact ldenhfier (Tl - the high water mark) 
and which bit It will use It also has a second pointer 
which 1s the current oldest transactlon m the buffer (the 
low water mark) and which bit It points to When high- 
water approaches low-water, a block of the log must be 
“rehably” pushed to disk and Joms previously pushed 
blocks Then low-water 1s advanced by 1000 High- 
water 1s advanced every time a new transactlon IS 
started The operations available on the hardware struc- 
ture are 

advance the high-water (I e begm a xact) 
push a block and update low-water 
abort a transactlon 
commit a transaction 

Hopefully, the block pool IS big enough to allow all 
transactlons In the block to be committed or aborted 
before the block IS “pushed” In this case, the block ~11 
never be updated on disk If there are long running tran- 
sactions, then blocks may be forced to disk before all 
transactlons are committed or aborted In this case, the 
subsequent commits or aborts w111 require an update to a 
disk-based block and ~111 be much slower Such disk 
operations on the LOG relation must be done by a special 
transaction (transaction zero) and ~111 follow the normal 
update rules described above 

A trigger will be used to perlodlcally advance T2 
and replace bit-2 with nulls (which don’t consume space) 
for any log records that correspond to transactlons now 
older than T2 

At 5 transactions per second, the LOG relation ~11 
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require about 20 Mbytes per year Although we expect a 
substantial amount of buffer space to be avallable, it 1s 
clear that high transactlon rate systems will not be able 
to keep all relevant portions of the XACT relation In 
main memory In this case, the run-time cost to check 
whether mdlvldual transactions have been commltted 
will be prohlbltlve Hence, an optional transactlon 
accelerator which we now describe will be a advanta- 
geous addltlon to POSTGRES 

We expect that virtually all of the transaction 
between T2 and T3 will be commltted transactlons Con- 
sequently, we will use a second XACT relation as a 
bloom filter [SEVR76] to detect aborted transactions as 
follows XACT will have tuples of the form 

line-id 
ordermg field 

the access method supplied 

bltmap[M] a bit map of size M 

For any aborted transaction with a XACTID between T2 
and T3, the followmg update must be performed Let N 
be the number of transactlons allocated to each XACT 
record and let LOW be T3 - remainder (T3/N) 

replace XACT (bltmap[l] = 1) 
where XACT line-Id = (XACTID - LOW)modulo N 
and I = hash (remainder ((XACTID - LOW) I N)) 

The vacuum process advances T3 perlodlcally and deletes 
tuples from XACT that correspond to transactions now 
older than T3 A second trigger ~111 run perlodlcally and 
advance T2 performing the above update for all aborted 
transactions now older than T2 

Consequently, whenever the run-time system wishes 
to check whether a candidate transactlon, C-XACTID 
between T2 and T3 committed or aborted, it exammes 

bitmap1 hash (reamlnder((C-XACTID - LOW) I N))l 
If a zero IS observed, then C-XACTID must have commit- 
ted, otherwise C-XACTID may have committed or 
aborted, and LOG must be examined to discover the true 
outcome 

The followmg analysis explores the performance of 
the transaction accelerator 

5.3.4. Analym of the Accelerator 
Suppose B bits of mam memory buffer space are 

available and that M = 1000 These B bits can either 
hold some (or all) of LOG or they can hold some (or all) 
of XACT Moreover, suppose transactions have a failure 
probablhty of F, and N 1s chosen so that X bita In bitmap 
are set on the average Hence, N = X / F In this case, 
a collection of Q transactions will require Q bits m LOG 
and 

Q* F * 1000 / X 

bits in the accelerator If this quantity IS greater than Q, 
the accelerator IS useless because it takes up more space 
than LOG Hence, assume that F * 1000 I X < < 1 In 
this case, checking the dlsposltlon of a transactlon m 
LOG will cause a page fault with probability 

FAULT (LOG) = 1 - [ B I Q] 
On the other hand, checkmg the dlsposltlon of a transac- 
tion In the accelerator will cause a page fault with proba- 
bllity 

P(XACT) = 1 - ( B * X) / (Q * F * 1000) 

With probability 

x I 1000 

a “1” will be observed in the accelerator data structure 
If 

B < Q * F * 1000 I X 

then all available buffer space IS consumed by the 
accelerator and a page fault will be assuredly generated 
to check In LOG If the transaction cornnutted or aborted 
Hence 

FAULT (XACT) = P(XACT) + X / 1000 

If B IS a larger value, then part of the buffer space can 
be used for LOG, and FAULT decreases 

The difference In fault probablhty between the log 
and the accelerator 

delta = FAULT (LOG) - FAULT (XACT) 

IS maximized by choosing 

X = 1000 * square-root (F) 

Figure 7 plots the expected number of faults m both sys- 
tems for various buffer sizes with this value for X As 
can be seen, the accelerator loses only when there 1s a 
mnuscule amount of buffer space or when there IS nearly 
enough to hold the whole log Moreover 

size (XACT) = square-root (F) * size (LOG) 
and if 

B = size (XACT) 

then the fault probablhty IS lowered from 

FAULT (LOG) = 1 - square-root (F) 

to 

Figure 7 Expected number of faults versus buffer size 

FAULT (XACT) = square-root (F) 

If F = 01, then buffer requirements are reduced by a 
factor of 10 and FAULT from 9 to 1 Even when F = 
1, XACT requires only one-third the buffer space, and 

cuts the fault probability in half 
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5.3.5 TransactIon Management 
If a crash 1s observed for which the disk-based data- 

base IS intact, then all the recovery system must do IS 
advance T2 to be equal to Tl marking all transactions In 
progress at the time of the crash “aborted” After this 
step, normal processmg can commence It 1s expected 
that recovery from “soft” crashes will be essentially 
instantaneous 

Protechon from the perils of “hard” crashes, 1 e ones 
for which the disk 1s not intact will be provided by mlr- 
rormg database files on magnetic disk either on a volume 
by volume basis m hardware or on a file by file basis In 
software 

We envlson a conventional two phase lock manager 
handling read and write locks along with I, T and D 
locks It 1s expected that R and W locks will be placed in 
a conventional main memory lock table, while other 
locks will reside In data records The only extension 
which we expect to implement IS “obJect locking” In this 
sltuatlon, a user can declare that his stored procedures 
are to be executed with no locking at all Of course, If 
two uses attempt to execute a stored procedure at the 
same time, one will be blocked because the first executor 
will place a write lock on the executed tuple In this 
way, If a collection of users IS wlllmg to guarantee that 
there are no “bhnd” accesses to the pieces of obJects (by 
someone directly accessing relabons contammg them), 
then they can be guaranteed consistency by the place- 
ment of normal read and write locks on procedural 
obJects and no locks at all on the component objects 

5.3 6 Access Methods 
We expect to implement both B-tree and OB-tree 

[STON83bl secondary indexes Moreover, our ADT facll- 
lty supports an arbitrary collection of user defined 
indexes Each such index IS, in reality, a pair of indexes 
one for magnetic disk records and one for archival 
records The first index IS of the form 

Index-relation (user-key-or-keys, pointer-to-tuple) 

and uses the same structure as current INGRES 
secondary indexes The second index will have pointers 
to archival tuples and will add “tmm” and “tmax” to 
whatever user keys are declared With this structure, 
records satlsfymg the quahficatlon 

where relation key = value 

will be interpreted to mean 

where (relatlon[“now”] key = value) 

and will require searching only the magnetic disk index 
General queries of the form 

where relatlon[Tl key = value 

will require searching both the magnetic disk and the 
archival index Both indexes need only search for 
records with quahfylng keys, moreover the archival 
Index can further restrict the search using tmax and 
tmin 

Any POSTQUEL replace command will insert a new 
data record with an appropriate BXID and tmm, and 
then insert a record into all key Indexes which are 
defined, and lastly change tmax on the record to be 
updated A POSTQUEL append will only perform the 
first and third steps while a delete only performs the 

second step Providing a pointer from the old tuple to 
the new tuple would allow POSTGRES to insert records 
only into Indexes for keys that are modified This optlml- 
zatlon saves many disk writes at some expense In run- 
time complexity We plan to implement this optlmlza- 
tion 

The implementor of a new access method structure 
need only keep m mmd that the new data record must be 
forced from main memory before any index records (or 
the index record will point to garbage) and that multiple 
index updates (e g page splits) must be forced In the 
correct order (1 e from leaf to root) This 1s easily accom- 
plished with a single low level command to the buffer 
manager 

order pagel, page2 

Inopportune crashes may leave an access method which 
consists of a multi-level tree with dangling index pages 
(1 e pages that are not pointed two from anywhere else 
In the tree) Such crashes may also leave the heap with 
uncommitted data records that cannot be reached from 
some indexes Such dangling tuples will be garbage col- 
lected by the vacuum process because they will have 
EXID equal to not committed Unfortunately If dangling 
data records are not recorded in any Index, then a sweep 
of memory will be perlodlcaly required to find them 
Dangling index pages must be garbage collected by con- 
ventional techniques 

Ordered relations pose a special problem in our 
environment, and we propose to change OB trees slightly 
to cope with the situation In particular, each place 
there 1s a counter In the orlglnal proposal K9ON83bl 
lndlcatmg the number of descendent tuple-identifiers, the 
counter must be replaced by the following 

counter-l same as counter 
flag the danger bit 

Any inserter or deleter In an OB tree unll set the danger 
flag whenever he updates counter-l Any OB tree acces- 
sor who reads a data item with the danger flag set must 
interrupt the algorithm and recompute counter-l (by des- 
cending the tree) Then he reascends updating counter-l 
and resetting the flag After this Interlude, he continues 
with his computation In this way the next transaction 
“fixes up” the structure left dangling by the previous 
inserter or deleter, and OB-trees now work correctly 

5 3 7. Vacuummg the Disk 
Any record with BXID and EXID of committed can 

be written to an optical disk or other long term reposl- 
tory Moreover, any records with an BXID or EXID 
corresponding to an aborted transaction can be discarded 
The Job of a “vacuum” demon IS to perform these two 
tasks Consequently, the number of magnetic disk 
records 1s nearly equal to the number with EXID equal 
to null (1 e the magnetic disk holds the current “state” of 
the database) The archival store holds hlstorlcal 
records, and the vacuum demon can ensure that ALL 
archival records are valid Hence, the run-time 
POSTGRES system need never check for the valldlty of 
archived records 

The vacuum process will first write a hlstorlcal 
record to the archival store, then Insert a record in the 
IID archival Index, then insert a record in any archival 
key Indexes, then delete the record from magnetic disk 
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storage, and finaly delete the record from any magnetic 
disk Indexes If a crash occurs, the vacuum process can 
simply begm at the start of the sequence agam 

If the vacuum process promptly archlves hlstorlcal 
records, then one requires disk space for the currently 
vahd records plus a small portion of the hIstorIca 
records (perhaps about 1 2 times the size of the currently 
valid database) AddItIonally, one should be able to 
maintain good physical clustermg on the attribute for 
which ordering 1s being attempted on the magnetic disk 
data set because there IS constant turnover of records 

Some users may wish recently updated records to 
remam on magnetic disk To accomphsh this tuning, we 
propose to allow a user to mstruct the vacuum as follows 

vacuum rel-name where QUAL 

A reasonable quahficatlon might be 

vacuum rel-name where rel-name tmax 
< now - 20 days 

In this case, the vacuum demon would not remove 
records from the magnetic disk representation of rel- 
name until the quahficatlon became true 

5 3.8. Version Management 
Versions will be Implemented by allocating a 

differential file [SEVR76] for each separate version The 
differential file will contain the tuples added to or sub- 
tracted from the base relation Secondary indexes will be 
built on versions to correspond to those on the base rela- 
tion from which the version 1s constructed 

The algorithm to process POSTQUEL commands on 
versions 1s to begin with the differential relation 
correspondmg to the version itself For any tuple which 
satisfies the quallficatlon, the V-IID of the inspected tuple 
must be remembered on a list of “seen IID’s” [WOOD831 
If a tuple with an IID on the “seen-id” hst 1s encoun- 
tered, then It 1s discarded As long as tuples can be 
inspected In reverse chronological order, one will always 
notice the latest version of a tuple first, and then know to 
discard earher tuples If the version IS built on top of 
another version, then continue processmg In the 
differential file of the next version Ultimately, a base 
relation will be reached and the process will stop 

If a tuple m a version 1s modified m the current ver- 
sion, then It IS treated as a normal update If an update 
to the current version modifies a tuple m a previous ver- 
sion or the base relation, then the IID of the replaced 
tuple will be placed m the V-IID field and an appropriate 
tuple inserted Into the dlfferentlal file for the version 
Deletes are handled m a slmllar fashion 

To merge a version into a parent verston then one 
must perform the following steps for each record m the 
new version valid at time T 

1) If It IS an Insert, then insert record into 
older version 
2) If it 1s a delete, then delete the record m 
the older version 
3) If It 1s a replace, then do an insert and a 
delete 

There 1s a conflict If one attempts to delete an already 
deleted record Such cases must be handled external to 

the algorithm The tactics In [GARC84] may be helpful 
in reconcilmg these conflicts 

An older version can be rolled forward into a newer 
version by performing the above operahons and then 
renaming the older version 

6 SUMMARY 
POSTGRES proposes to support complex obJects by 

supportmg an extendible type system for defining new 
columns for relations, new operators on these columns, 
and new access methods This faclhty 1s appropriate for 
fairly “simple” complex objects More complex ObJects, 
especially those with shared subobJects or multiple levels 
of nesting, should use POSTGRES procedures as their 
defimtlon mechamsm Procedures will be optlmlzed by 
caching complled plans and even answers for retrieval 
commands 

Triggers and rules are supported as commands with 
“always” and “demand” modifiers They are efficiently 
supported by extensions to the locking system Both for- 
ward chaining and backward chaining control structures 
are provided wlthm the data manager using these 
mechamsms Our rules system should prove attractive 
when there are multiple rules which might apply m any 
given situation 

Crash recovery IS slmphfied by not overwriting data 
and then vacuuming tuples to an archive store The new 
storage system 1s greatly slmphfied from current technol- 
ogy and supports time-oriented access and versions with 
little difficulty The major cost of the storage system IS 
the requirement to push dirty pages of data to stable 
storage at commit time 

An optical disk IS used effectively as an archival 
medium, and POSTGRES has a collection of demons run- 
ning m the background These can effectively utilize 
otherwise idle processors Custom hardware could 
effectively provide stable maln memory, support for the 
LOG relation, and support for run-time checkmg of tuple 
vahdlty 

Lastly, these goals are accomplished with no 
changes to the relational model at all At the current 
time coding of POSTGRES 1s Just beglnnlng We hope to 
have a prototype running m about a year 
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