
THE DESIGN OF POSTGRES

Mcchael Stonebraket and Lawrence A Rowe

Department of Electrtcal Englneercng
and Computer Sciences
Universrty of Caltfortua

Berkeley, CA 94720

Abstract

This paper presents the prehmmary design of a new
database management system, called POSTGRES, that IS
the successor to the INGRES relational database system
The mam design goals of the new system are to

1) provide better support for complex ObJects,

2) provide user extendlblhty for data types, opera-
tors and access methods,

3) provide facilities for active databases (1 e , alert-
ers and triggers) and lnferencing including
forward- and backward-chalnmg,

4) simplify the DBMS code for crash recovery,

5) produce a design that can take advantage of optl-
cal disks, workstations composed of multiple
tightly-coupled processors, and custom designed
VLSI chips, and

6) make as few changes as possible (preferably
none) to the relatlonal model

The paper describes the query language, programmmg
langauge interface, system architecture, query processrng
strategy, and storage system for the new system

1 INTRODUCTION

The INGRES relational database management sys-
tem (DBMS) was implemented durmg 1975-1977 at the
Umverislty of Califorma Since 1978 varloub prototype
extensions have been made to support dlstrlbuted data-
bases [STON83al, ordered relations [STON83b], abstract
data types [STON83c], and QUEL as a data type
[STON84aJ In addition, we proposed but never proto-
typed a new application program interface [STON84b]
The Umverslty of California version of INGRES has been
“hacked up enough” to make the mcluslon of substantial

PermIssIon to copy wlthout fee all or part of this matenal IS granted
prowded that the copies are not made or dlstrlbuted for direct
commercial advantage, the ACM copyrIght notxe and the title of the
pubhcatlon and its date appear, and notIce IS gwen that copymg IS by
permIssIon of the Assoclatlon for Computmg Machmery To copy
otherwIse, or to repubhsh, requires a fee and/or specific permIssIon

0 1986 ACM 0-89791-191-1/86/0500/0340 $00 75

new function extremely difficult Another problem wth
contlnumg to extend the existing system 1s that many of
our proposed ideas would be difficult to integrate into
that system because of earlier design decisions Conse-
quently, we are bullchng a new database system, called
POSTGRES (POST mGRES)

This paper describes the design ratlonale, the
features of POSTGRES, and our proposed lmplementa-
tlon for the system The next section discusses the
design goals for the system Sections 3 and 4 presents
the query language and programming language mter-
face, respectively, to the system Section 5 describes the
system architecture lncludmg the process structure,
query processing strategies, and storage system

2 DISCUSSION OF DESIGN GOALS

The relational data model has proven very success-
ful at solving most business data processing problems
Many commercial systems are being marketed that are
based on the relational model and m time these systems
will replace older technology DBMS’s However, there
are many engineering applications (e g , CAD systems,
programming environments, geographic data, and graph-
ics) for which a conventional relational system 1s not
suitable We have embarked on the design and lmple-
mentation of a new generation of DBMS’s, based on the
relational model, that will provide the facilltles required
by these apphcatlons This sectlon describes the maJor
design goals for this new system

The first goal 1s to support complex obJects [LORI83,
STON83cl Engineering data, in contrast to business
data, 1s more complex and dynamic Although the
required data types can be simulated on a relational sys-
tem, the performance of the applications IS unacceptable
Consider the following simple example The objective IS
to store a collection of geographic obJects in a database
(e g , polygons, lines, and circles) In a conventional rela-
tional DBMS, a relation for each type of ObJect with
appropriate fields would be created

POLYGON (id, other fields)
CIRCLE (id, other fields)
LINE (id, other fields)

To display these obJects on the screen would require
additional information that represented display charac-
terlstlcs for each object (e g , color, position, scaling fac-
tor, etc) Because this mformation IS the same for all
obJects, it can be stored in a smgle relation

340

DISPLAY(color, posltlon, scaling, obJ-type, obJect-id)

The “object-id” field 1s the identifier of a tuple m a rela-
tion ldentlfied by the “obJ-type” field (1 e, POLYGON,
CIRCLE, or LINE) Given thrs representation, the fol-
lowing commands would have to be executed to produce a
display

foreach OBJ m {POLYGON, CIRCLE, LINE} do
range of 0 1s OBJ
range of D 1s DISPLAY
retrieve (D all, 0 all)
where D obJe&id = 0 id
and D obJ-type = OBJ

Unfortunately, this collection of commands ~111 not be
executed fast enough by any relational system to “paint
the screen” in real time (I e, one or two seconds) The
problem 1s that regardless of how fast your DBMS IS
there are too many queries that have to be executed to
fetch the data for the obJect The feature that 1s needed
IS the ability to store the obJect m a field m DISPLAY so
that only one query 1s required to fetch It Consequently,
our first goal 1s to correct this deficiency

The second goal for POSTGRES 1s to make It easier
to extend the DBMS so that it can be used in new apph-
cation domains A conventional DBMS has a small set of
built-m data types and access methods Many apphca-
tlons require speclahzed data types (e g , geometlc data
types for CAD/CAM or a latitude and longtude posItIon
data type for mapping applrcatlons) While these data
types can be simulated on the built-m data types, the
resulting queries are verbose and confusing and the per-
formance can be poor A simple example using boxes 1s
presented elsewhere [STONSG] Such applications would
be best served by the ability to add new data types and
new operators to a DBMS Moreover, B-trees are only
appropriate for certain kinds of data, and new access
methods are often required for some data types For
example, K-D-B trees [ROB1811 and R-trees [GUTM84]
are appropriate access methods for point and polygon
data, respectively

Consequently, our second goal 1s to allow new data
types, new operators and new access methods to be
included in the DBMS Moreover, It IS crucial that they
be implementable by non-experts which means easy-to-
use interfaces should be preserved for any code that ~111
be written by a user Other researchers are pursuing a
similar goal [DEWI

The third goal for POSTGRES IS to support active
databases and rules Many apphcatlons are most easily
programmed using alerters and triggers For example,
form-flow applications such as a bug reportmg system
require active forms that are passed from one user to
another [TSICSS, ROWE821 In a bug report appllcatlon,
the manager of the program mamtenance group should
be notified If a high prlorlty bug that has been assigned
to a programmer has not been fixed by a specified date
A database alerter IS needed that will send a message to
the manager calling his attention to the problem
Triggers can be used to propagate updates m the data-
base to mamtam consistency For example, deletmg a
department tuple m the DEPT relation might trigger an
update to delete all employees m that department m the
EMP relation

In addition, many expert system applications

operate on data that IS more easily described as rules
rather than as data values For example, the teaching
load of professors m the EECS department can be
described by the followmg rules

1) The normal load IS 8 contact hours per year

2) The schedulmg officer gets a 25 percent reduction

3) The chairman does not have to teach

4) Faculty on research leave receive a reduction
proportional to their leave fraction

5) Courses with less than 10 students generate
credit at 0 1 contact hours per student

6) Courses with more than 50 students generate
EXTRA contact hours at a rate of 0 01 per stu-
dent m excess of 50

7) Faculty can have a credit balance or a deficit of
up to 2 contact hours

These rules are subject to frequent change The leave
status, course assignments, and admmlstrahve assign-
ments (e g, chairman and scheduling officer) all change
frequently It would be most natural to store the above
rules in a DBMS and then infer the actual teaching load
of mdlvldual faculty rather than stormg teaching load as
ordinary data and then attempting to enforce the above
rules by a collection of complex integrity constraints
Consequently, our third goal 1s to support alerters,
triggers, and general rule processing

The fourth goal for POSTGRES IS to reduce the
amount of code m the DBMS written to support crash
recovery Most DBMS’s have a large amount of crash
recovery code that IS tricky to write, full of special cases,
and very difficult to test and debug Because one of our
goals IS to allow user-defined access methods, it IS
imperative that the model for crash recovery be as am-
ple as possible and easily extendible Our proposed
approach IS to treat the log as normal data managed by
the DBMS which will simplify the recovery code and
simultaneously provide support for access to the hlstorl-
cal data

Our next goal 1s to make use of new technologies
whenever possible Optical disks (even wrltable optical
disks) are becoming available In the commercial market-
place Although they have slower access characterlstlcs,
their price-performance and rellabl1lt.y may prove attrac-
tive A system design that mcludes optical disks in the
storage hierarchy will have an advantage Another tech-
nology that we forsee 1s workstation-sized processors
with several CPU’s We want to design POSTGRES m
such way as to take advantage of these CPU resources
Lastly, a design that could utlhze special purpose
hardware effectively might make a convmcmg case for
designing and implementing custom designed VLSI
chtps Our fifth goal, then, IS to investigate a design that
can effectively ubhze an optical disk, several tightly cou-
pled processors and custom designed VLSI chips

The last goal for POSTGRES 1s to make as few
changes to the relational model as possible First, many
users m the busmess data processing world will become
famlhar with relational concepts and this framework
should be preserved If possible Second, we belleve the
original “spartan slmphclty” argument made by Codd

341

[CODD701 IS as true today as in 1970 Lastly, there are
many semantic data models but there does not appear to
be a small model that will solve everyone’s problem For
example, a generahzatlon hierarchy ~111 not solve the
problem of structurmg CAD data and the design models
developed by the CAD commumty will not handle gen-
erahzatlon hlerarchles Rather than bulldmg a system
that 1s based on a large, complex data model, we believe
a new system should be built on a small, simple model
that IS extendible We believe that we can accomplish
our goals while preservmg the relational model Other
researchers are striving for similar goals but they are
using different approaches [AFSASB, ATK184, COPEM,
DERR85, LOR183, LUM85]

The remainder of the paper describes the design of
POSTGRES and the basic system architecture we pro-
pose to use to implement the system

3. POSTQUEL
This section describes the query language supported

by POSTGRES The relational model as described m the
orlgnal definition by Codd [CODD701 has been
preserved A database 1s composed of a collection of rela-
tions that contain tuples with the same fields defined,
and the values m a field have the same data type The
query language 1s based on the INGRES query language
QUEL [HELD751 Several extensions and changes have
been made to QUEL so the new language IS called POST-
QUEL to dlstmgulsh it from the original language and
other QUEL extensions described elsewhere [STON85a,
KUNG841

Most of QUEL 1s left intact The followng com-
mands are included m POSTQUEL without any changes
Create Relation, Destroy Relation, Append, Delete,
Replace, Retrieve, Retrieve into Result, Define View,
Define Integrity, and Define Protectlon The Modify com-
mand which specified the storage structure for a relation
has been omitted because all relations are stored m a
particular structure designed to support hlstorlcal data
The Index command IS retained so that other access
paths to the data can be defined

Although the basic structure of POSTQUEL 1s very
similar to QUEL, numerous extensions have been made
to support complex obJects, user-defined data types and
access methods, time varying data (1 e, versions,
snapshots, and historical data), iteration queries, alert-
ers, triggers, and rules These changes are described In
the subsections that follow

3 1 Data Definition
The followmg built-m data types are provided,

1) integers,

2) floating point,

3) fixed length character strings,

4) unbounded varying length arrays of fixed types
urlth an arbitrary number of dimensions,

5) POSTQUEL, and

6) procedure

Scalar type fields (e g , integer, floating point, and fixed
length character strmgs) are referenced by the conven-

tlonal dot notation (e g , EMP name)

Variable length arrays are provided for applications
that need to store large homogenous sequences of data
(e g , signal processing data, image, or voice) Fields of
this type are referenced in the standard way (e g,
EMPplcture[lJ refers to the I-th element of the picture
array) A special case of arrays 1s the text data type
which 1s a one-dimensional array of characters Note
that arrays can be extended dynamically

Fields of type POSTQUEL contain a sequence of
data mampulatlon commands They are referenced by
the conventlonal dot notation However, 9 a POSTQUEL
field contains a retrieve command, the data specified by
that command can be rmpllcltly referenced by a multiple
dot notation (e g , EMP hobbles battmgavg) as proposed
elsewhere [STON84al and first suggested by Zamolo m
GEM [ZANISBI

Fields of type procedure contain procedures written
in a general purpose programming language with embed-
ded data mampulatlon commands (e g, EQUEL
[ALLM761 or Rlgel [ROWE7911 Fields of type procedure
and POSTQUEL can be executed using the Execute com-
mand Suppose we are even a relation with the follow-
ing definition

EMP(name, age, salary, hobbles, dept)

in which the “hobbles” field 1s of type POSTQUEL That
is, “hobbles” contains queries that retrieve data about
the employee’s hobbles from other relations The follow-
ing command will execute the queries m that field

execute (EMP hobbles)
where EMP name = “Smith”

The value returned by this command can be a sequence
of tuples with varying types because the field can contain
more than one retrieve command and different com-
mands can return different types of records Conse-
quently, the programming language interface must pro-
vide faclhtles to determine the type of the returned
records and to access the fields dynamically

Fields of type POSTQUEL and procedure can be
used to represent complex objects with shared subobJects
and to support multiple representations of data Exam-
ples are given in the next section on complex obJects

In addition to these built-m data types, user-defined
data types can be defined using an interface similar to
the one developed for ADT-INGRES [STON83c,
STON861 New data types and operators can be defined
with the user-defined data type facility

3 2. Complex ObJects
This section describes how fields of type POSTQUEL

and procedure can be used to represent shared complex
obJects and to support multiple represent&Ions of data

Shared complex objects can be represented by a field
of type POSTQUEL that contains a sequence of com-
mands to retrieve data from other relations that
represent the subobJects For example, given the rela-
tions POLYGON, CIRCLE, and LINE defined above, an
obJect relation can be defined that represents complex
objects composed of polygons, circles, and lines The
definition of the obJect relation would be

create OBJECT (name = char[lO], obJ = postquel)

The table in figure 1 shows sample values for this rela-

342

tlon The relation contains the descrlptlon of two com-
plex objects named “apple” and “orange” The obJect
“apple” IS composed of a polygon and a circle and the

Name OBJ
apple retrieve (POLYGON all)

where POLYGON id = 10
retrieve (CIRCLE all)
where CIRCLE Id = 40

orange retrieve (LINE all)
where LINE id = 17
retrieve (POLYGON all)
where POLYGON Id = 10

Figure 1 Example of an OBJECT relation

obJect “orange” 1s composed of a line and a polygon
Notice that both obJecta share the polygon with Id equal
to 10

Multiple representations of data are useful for cach-
mg data m a data structure that IS better sulted to a par-
ticular use while still retammg the ease of access via a
relational representation Many examples of this use are
found m database systems (e g , mam memory relation
descriptors) and forms systems [ROWE851 Multiple
represent&Ions can be supported by defining a procedure
that translates one representation (e g , a relatIona
represent&on) to another representation (e g , a display
list suItable for a graphics display) The translation pro-
cedure 1s stored m the database Contmumg with our
complex object example, the OBJECT relation would
have an addItIona field, named “display,” that would
contain a procedure that creates a display list for an
obJect stored m POLYGON, CIRCLE, and LINE

create OBJECT(name=char[lOl, obJ=postquel,
display =cproc)

The value stored in the display field IS a procedure writ-
ten m C that queries the database to fetch the subobjects
that make up the obJect and that creates the display list
representation for the object

This solution has two problems the code IS repeated
m every OBJECT tuple and the C procedure replicates
the queries stored m the object field to retrieve the
subobjects These problems can be solved by storing the
procedure m a separate relation (1 e , normahzmg the
database design) and by passmg the obJect to the pro-
cedure as an argument The defimtlon of the relation m
which the procedures will be stored 1s

create OBJPROC(name=char[l21, proc=cproc)
append to OBJPROC(name=“dlsplay-list”,

proc = ” source code “)

Now, the entry m the display field for the “apple” object
1s

execute (OBJPROC proc)
with (“apple”)
where OBJPROC name =“dlsplay-hst”

This command executes the procedure to create the alter-
native representation and passes to It the name of the

ObJect Notice that the “display” field can be changed to
a value of type POSTQUEL because we are not stormg
the procedure in OBJECT, only a command to execute
the procedure At this pomt, the procedure can execute a
command to fetch the data Because the procedure was
passed the name of the obJect it can execute the followmg
command to fetch its value

execute (OBJECT obJ)
where OBJECT name=argument

This solution IS somewhat complex but it stores only one
copy of the procedure’s source code m the database and it
stores only one copy of the commands to fetch the data
that represents the obJect

Fields of type POSTQUEL and procedure can be
efficiently supported through a combmatlon of complla-
tlon and precomputatlon described m sectlons 4 and 5

3 3 Time Varying Data
POSTQUEL allows users to save and query hIstorI-

cal data and versions [KATZ@, WOOD831 By default,
data m a relation IS never deleted or updated Conven-
tional retrievals always access the current tuples m the
relation Hlstorlcal data can be accessed by mdlcatmg
the desired time when defining a tuple variable For
example, to access hlstorlcal employee data a user writes

retrieve (E all)
from E m EMPr7 January 1985”l

which retrieves all records for employees that worked for
the company on 7 January 1985 The From-clause which
IS similar to the SQL mechamsm to define tuple varl-
ables [ASTR76], replaces the QUEL Range command
The Range command was removed from the query
language because it defined a tuple variable for the dura-
tion of the current user program Because queries can be
stored as the value of a field, the scope of tuple variable
defimtlons must be constramed The From-clause makes
the scope of the defimtlon the current query

This bracket notation for accessmg hIstorIca data
lmphcltly defines a snapshot [ADIBBO] The lmplementa-
tlon of queries that access this snapshot, described m
detail m sectlon 5, searches back through the history of
the relation to find the appropriate tuples The user can
materlallze the snapshot by executing a Retrieve-into
command that will make a copy of the data m another
relation

Apphcatlons that do not want to save historical data
can specify a cutoff pomt for a relation Data that IS
older than the cutoff point IS deleted from the database
Cutoff pomts are defined by the Discard command The
command

discard EMP before “1 week”

deletes data In the EMP relation that 1s more than 1
week old The commands

discard EMP before “now”

and
discard EMP

retain only the current data In EMP
It I’s also possible to write queries that reference

data which 1s valid between two dates The notation

relation-nametdatel, date21

343

specifies the relation contammg all tuples that were m
the relation at some time between date1 and date2
Either or both of these dates can be omitted to specify all
data In the relation from the time it was created until a
fixed date (1 e , relation-name[,date]), all data in the rela-
tion from a fixed date to the present (1 e, relatlon-
name[date,l), or all data that was every m the relation
(1 e , relation-namer 1) For example, the query

retrieve (E all)
from E m EMP[]
where E name =“Smlth”

returns all lnformatlon on employees named Smith who
worked for the company at any time

POSTQUEL has a three level memory hierarchy 1)
main memory, 2) secondary memory (magnetic disk), and
3) tertiary memory (optical disk) Current data 1s stored
in secondary memory and hlstorlcal data migrates to ter-
tiary memory However, users can query the data
without havmg to know where the data 1s stored

Finally, POSTGRES provides support for versions
A version can be created from a relation or a snapshot
Updates to a version do not modify the underlying rela-
tlon and updates to the underlylng relation will be VISI-
ble through the version unless the value has been
modified in the version Versions are defined by the
NewversIon command The command

newversion EMPTEST from EMP

creates a version named EMPTEST that 1s derived from
the EMP relation If the user wants to create a version
that 1s not changed by subsequent updates to the under-
lying relation as m most source code control systems
[TICH821, he can create a version off a snapshot

A Merge command IS provided that will merge the
changes made in a version back Into the underlying rela-
tion An example of a Merge command 1s

merge EMPTEST into EMP

The Merge command will use a semi-automatic pro-
cedure to resolve updates to the underlymg relation and
the version that conflict [GARC841

This section described POSTGRES support for time
varying data The strategy for Implementing these
features IS described below in the section on system
architecture

3 4. Iteration Queries, Alerters, Triggers, and
Rules

This sectlon describes the POSTQUEL commands
for specifying iterative execution of queries, alerters
[BUNE791, triggers [ASTR761, and rules

Iterative queries are requried to support transitive
closure [GUTM84 KUNG841 Iteration IS specified by
appending an asterisk (“*“) to a command that should be
repetitively executed For example, to construct a rela-
tlon that includes all people managed by someone either
directly or Indirectly a Retrieve*-Into command 1s used
Suppose one 1s given an employee relation with a name
and manager field

create EMP(name=char[201, ,mgr=char[201,)

The followmg query creates a relation that conatlns all
employees who work for Jones

retrieve* into SUBORDINATES(E name, E mgr)
from E In EMP, S in SUBORDINATES
where E name =“Jones”

or E mgr=S name

This command continues to execute the Retrieve-into
command unkl there are no changes made to the
SUBORDINATES relation

The “*” modifier can be appended to any of the
POSTQUEL data manlpulatlon commands Append,
Delete, Execute, Replace, Retrieve, and Retrieve-Into
Complex Iterahons, like the A-* heurlstlc search algo-
rithm, can be specified using sequences of these lterakon
queries [STON85bl

Alerters and triggers are specified by adding the
keyword “always” to a query For example, an alerter 1s
specified by a Retrieve command such as

retrieve always (EMP all)
where EMP name = “Bill”

This command returns data to the apphcatlon program
that issued it whenever Bill’s employee record IS
changed ’ A trigger IS an update query (I e, Append,
Replace, or Delete command) with an “always” keyword
For example, the command

delete always DEPT
where count(EMP name by DEPT dname

where EMPdept = DEPTdname) = 0

defines a trigger that ~111 delete DEPT records for
departments with no employees

Iteration queries differ from alerters and triggers m
that lteratlon queries run until they cease to have an
effect while alerters and triggers run mdefinltely An
efficient mechamsm to awaken “always” commands 1s
described m the system architecture sectlon

“Always” commands support a forward-chaining
control structure m which an update wakes up a collec-
tlon of alerters and triggers that can wake up other com-
mands This process termmates when no new commands
are awakened POSTGRES also provides support for a
backward-chammg control structure

The conventional approach to supportmg inference
IS to extend the view mechamsm (or something
equivalent) with additional capabllltles (e g [ULLM85,
WONG84, JARK851) The canomcal example IS the
definition of the ANCESTOR relation based on a stored
relation PARENT

PARENT (parent-of, offspring)

Ancestor can then be defined by the followmg commands

range of P IS PARENT
range of A IS ANCESTOR
define view ANCESTOR (P all)
define view* ANCESTOR (A parent-of, P offsprmg)

where A offsprmg = P parent-of

Notice that the ANCESTOR view 1s defined by multiple
commands that may Involve recursion A query such as

retrieve (ANCESTOR parent-of)
where ANCESTOR offsprmg = “Bill”

’ Stnctly speakmg the data 1s returned to the program
through a portal which IS defined m sectlon 4

344

IS processed by extensions to a standard query
modlficatlon algorithm [STON751 to generate a recursive
command or a sequence of commands on stored relations
To support this mechanism, the query optimizer must be
extended to handle these commands

This approach works well when there are only a few
commands which define a particular view and when the
commands do not generate confllctlng answers This
approach 1s less successful if either of these condltlons IS
vlolated as m the followmg example

define view DESK-EMP (EMP all, desk = “steel”)
where EMP age < 40

define view DESK-EMP (EMP all, desk = “wood”
where EMP age > = 40

define view DESK-EMP (EMP all, desk = “wood”)
where EMP name = “hotshot”

define view DESK-EMP (EMP all, desk = “steel”)
where EMP name = “bigshot”

In this example, employees over 40 get a wood desk,
those under 40 get a steel desk However, “hotshot” and
“bigshot” are exceptions to these rules “Hotshot” IS
given a wood desk and “blgshot” IS given a steel desk,
regardless of their ages In this case, the query

retrieve (DESK-EMP desk) where DESK-EMP name
= “blgshot”

will require 4 separate commands to be optimized and
run Moreover, both the second and the fourth
defimtlons produce an answer to the query that IS
different In the case that a larger number of view
definltlons IS used in the specification of an obJect, then
the important performance parameter will be isolating
the view definltlons which are actually useful Moreover,
when there are confhctlng view definitions (e g the gen-
eral rule and then exceptional cases), one requires a
priority scheme to decide which of confhctmg defimtlons
to utlhze The scheme described below works well in such
situations

POSTGRES supports backward-chaining rules by
virtual columns (1 e , columns for which no value IS
stored) Data m such columns IS inferred on demand
from rules and cannot be directly updated, except by
adding or droppmg rules Rules are specified by addmg
the keyword “demand” to a query Hence, for the
DESK-EMP example, the EMP relation would have a
virtual field, named “desk,” that would be defined by four
rules

replace demand EMP (desk = “steel”)
where EMPage < 40

replace demand EMP (desk = “wood”
where EMP age > = 40

replace demand EMP (desk = “wood”)
where EMP name = “hotshot”

replace demand EMP (desk = “steel”)
where EMP name = “bigshot”

The third and fourth commands would be defined at a
higher prlorlty than the first and second A query that
accessed the desk field would cause the “demand” com-
mands to be processed to determlne the appropriate desk
value for each EMP tuple retrieved

This subsection has described a collection of faclh-
ties provided m POSTQUEL to support complex queries
k g , lteratlon) and active databases (e g, alerters,

triggers, and rules) Efficient techmques for lmplement-
Ing these faclhtles are given m section 5

PROGRAMMING
i-ACE

LANGUAGE INTER-

This section describes the programmmg language
m&face (HITCHING POST) to POSTGRES We had
three objectives when designing the HITCHING POST
and POSTGRES faclhtles First, we wanted to design
and implement a mechanism that would slmphfy the
development of browsing style appllcatlons Second, we
wanted HITCHING POST to be powerful enough that all
programs that need to access the database lncludmg the
ad hoc terminal monitor and any preprocessors for
embedded query languages could be written with the
interface And lastly, we wanted to provide faclhtles
that would allow an application developer to tune the
performance of his program (1 e , to trade flexlblhty and
rehablhty for performance)

Any POSTQUEL command can be executed m a
program In addition, a mechanism, called a “portal,” 1s
provided that allows the program to retrieve data from
the database A portal 1s slmllar to a cursor [ASTR761,
except that It allows random access to the data specified
by the query and the program can fetch more than one
record at a time The portal mechanism described here
IS different than the one we previously deslgned
[STON84b], but the goal IS still the same The followmg
subsectlons describe the commands for defimng portals
and accessmg data through them and the faclhtles for
lmprovmg the performance of query execuhon (1 e , com-
pilation and fast-path)

4.1. Portals
A portal 1s defined by a Retrieve-portal or Execute-

portal command For example, the followmg command
defines a portal named P

retrieve portal P(EMP all)
where EMP age C 40

This command 1s passed to the backend process which
generates a query plan to fetch the data The program
can now issue commands to fetch data from the backend
process to the frontend process or to change the “current
poslbon” of the portal The portal can be thought of as a
query plan In execution In the DBMS process and a
buffer contalnmg fetched data In the apphcatlon process

The program fetches data from the backend into the
buffer by executing a Fetch command For example, the
command

fetch 20 Into P

fetches the first twenty records in the portal into the
frontend program These records can be accessed by sub-
script and field references on P For example, P[ll refers
to the I-th record returned by the last Fetch command
and P[I] name refers to the “name” field In the l-th
record Subsequent fetches replace the previously
fetched data m the frontend program buffer

The concept of a portal 1s that the data m the buffer
IS the data currently bemg displayed by the browser
Commands entered by the user at the termmal are
translated into database commands that change the data
In the buffer which 1s then redisplayed Suppose, for
example, the user entered a command to scroll forward

345

half a screen This command would be translated by the
frontend program (1 e , the browser) into a Move com-
mand followed by a Fetch command The following two
commands would fetch data into the buffer which when
redisplayed would appear to scroll the data forward by
one half screen

move P forward 10
fetch 20 into P

The Move command reposltlons the “current posltlon” to
point to the 11-th tuple m the portal and the Fetch com-
mand fetches tuples 11 through 30 m the ordering esta-
blished by executing the query plan The “current posi-
tlon” of the portal IS the first tuple returned by the last
Fetch command If Move commands have been executed
since the last Fetch command, the “current position” IS
the first tuple that would be returned by a Fetch com-
mand if it were executed

The Move command has other varlatlons that slm-
phfy the implementation of other browsing commands
Variations exist that allow the portal postion to be
moved forward or backward, to an absolute posltlon, or to
the first tuple that satisfies a predicate For example, to
scroll backwards one half screen, the followmg commands
are issued

move P backward 10
fetch 20 into P

In addition to keeping track of the “current posltlon,” the
backend process also keeps track of the sequence number
of the current tuple so that the program can move to an
absolute posltlon For example, to scroll forward to the
63-rd tuple the program executes the command

move P forward to 63

Lastly, a Move command 1s provided that ~111
search forward or backward to the first tuple that
satisfies a predicate as illustrated by the followmg com-
mand that moves forward to the first employee whose
salary is greater than $25,000

move P forward to salary > 25K

This command posltlons the portal on the first qualifying
tuple A Fetch command will fetch this tuple and the
ones immediately followmg it which may not satisfy the
predicate To fetch only tuples that satisfy the predicate,
the Fetch command 1s used as follows

fetch 20 mto P where salary > 25K

The backend process will continue to execute the query
plan until 20 tuples have been found that satisfy the
predicate or until the portal data 1s exhausted

Portals differ slgmficantly from cursors m the way
data 1s updated Once a cursor IS posltloned on a record,
it can be modified or deleted (I e, updated directly)
Data m a portal cannot be updated directly It IS
updated by Delete or Replace commands on the relations
from which the portal data 1s taken Suppose the user
entered commands to a browser that change Smith’s
salary Assuming that Smith’s record 1s already In the
buffer, the browser would translate this request into the
following sequence of commands

replace EMP(salary=NewSalary)
where EMP name = “Smith”
fetch 20 into P

The Replace command modifies Smith’s tuple in the EMP
relation and the Fetch command synchronizes the buffer
in the browser with the data in the database We chose
this mdlrect approach to updating the data because rt
makes sense for the model of a portal as a query plan
In our previous formulation [STONMI, a portal was
treated as an ordered view and updates to the portal
were treated as view updates We believe both models
are viable, although the query plan model requires less
code to be written

In addition to the Retrieve-portal command, portals
can be defined by an Execute command For example,
suppose the EMP relation had a field of type POSTQUEL
named “hobbles”

EMP (name, salary, age, hobbles)

that contained commands to retrieve a person’s hobbles
from the followmg relations

SOFTBALL (name, poatlon, batting-avg)
COMPUTERS (name, Isowner, brand, interest)

An application program can define a portal that w111
range over the tuples descrlblng a person’s hobbles as fol-
lows

execute portal H(EMP hobbles)
where EMP name = “Smith”

This command defines a portal, named “H,” that 1s bound
to Smith’s hobby records Since a person can have
several hobbles, represented by more than on Retrieve
command m the “hobbles” field, the records in the buffer
may have different types Consequently, HITCHING
POST must provide routines that allow the program to
determine the number of fields, and the type, name, and
value of each field in each record fetched Into the buffer

4 2. Compdatlon and Fast-Path
This subsection describes facllltles to improve the

performance of query execution Two facllltles are pro-
vided query compllatlon and fast-path Any POSTQUEL
command, including portal commands, can take advan-
tage of these facllltles

POSTGRES has a system catalog m which appllca-
tlon programs can store queries that are to be compiled
The catalog 1s named “CODE” and has the followmg
structure

CODE(ld, owner, command)
The “id” and “owner” fields form a unique Identifier for
each stored command The “command” field holds the
command that 1s to be compiled Suppose the program-
mer of the relation browser described above wanted to
compile the Replace command that was used to update
the employee’s salary field The program could append
the command, with sultable parameters, to the CODE
catalog as follows

append to CODE(ld = 1, owner =“browser”,
command =“replace EMP(salary = $1)

where EMP name = $2”)

“$1” and “$2” denote the argumenta to the command
Now, to execute the Replace command that updates
Smith’s salary shown above, the program executes the
followmg command

346

execute (CODE command)
‘~nth (NewSalary, “Smith”)
where CODE id= 1 and CODE owner =“browser”

This command executes the Replace command after sub-
stltutlng the arguments

Executing commands stored m the CODE catalog
does not by itself make the command run any faster
However, a compllatlon demon 1s always executing that
examines the entries m the CODE catalog m every data-
base and complies the queries Assuming the complla-
tlon demon has compiled the Replace command in CODE,
the query should run substantially faster because the
time to parse and optmuze the query 1s avoided Section
5 describes a general purpose mechanism for mvahdatmg
complied queries when the schema changes

Compiled queries are faster than queries that are
parsed and optimized at run-time but for some apphca-
tlons, even they are not fast enough The problem 1s that
the Execute command that mvokes the compiled query
still must be processed Consequently, a fast-path facll-
lty IS provided that avolds this overhead In the Execute
command above, the only varlablhty IS the argument list
and the unique identifier that selects the query to be run
HITCHING POST has a run-time routine that allows
this mformatlon to be passed to the backend m a binary
format For example, the followmg function call Invokes
the Replace command described above

exec-fp(1, “browser”, NewSalary, “Smith”)

This function sends a message to the backend that
includes only the mformatlon needed to determine where
each value IS located The backend retrieves the com-
plled plan (possibly from the buffer pool), substitutes the
parameters without type checking, and invokes the query
plan This path through the backend IS hand-optimized
to be very fast so the overhead t.o invoke a complled
query plan is minimal

This subsection has described faclhtles that allow an
application programmer to improve the performance of a
program by compllmg queries or by usmg a special fast-
path facility

5. SYSTEM ARCHITECTURE
This section describes how we propose to implement

POSTGRES The first subsection describes the process
structure The second subsection describes how query
processmg w111 be implemented, including fields of type
POSTQUEL, procedure, and user-defined data type The
third subsection describes how alerters, triggers, and
rules will be implemented And finally, the fourth sub-
section describes the storage system for Implementing
time varying data

5.1. Process Structure
DBMS code must run as a sparate process from the

apphcatlon programs that access the database m order to
provide data protection The process structure can use
one DBMS process per apphcatlon program (I e, a
process-per-user model [STON811) or one DBMS process
for all apphcatlon programs (I e, a server model) The
server model has many performance benefits (e g , shar-
ing of open file descriptors and buffers and optimized
task sHrltChmg and message sending overhead) m a large
machme environment m which high performance 1s crltl-

cal However, this approach requires that a fairly com-
plete special-purpose operating system be built In con-
strast, the process-per-user model IS simpler to imple-
ment but will not perform as well on most conventional
operating systems We decided after much soul search-
ing to implement POSTGRES using a process-per-user
model architecture because of our limited programming
resources POSTGRES 1s an ambltlous undertaking and
we beheve the additional complexity introduced by the
server architecture was not worth the additional risk of
not getting the system running Our current plan then
1s to implement POSTGRES as a process-per-user model
on Unix 4 3 BSD

The process structure for POSTGRES IS shown m
figure 3 The POSTMASTER will contain the lock
manager (since there are no shared segments m 4 3 BSD)
and will control the demons that will perform various
database services (such as asynchronously compllmg user
commands) There will be one POSTMASTER process
per machine, and it will be started at “sysgen” time

The POSTGRES run-time system executes com-
mands on behalf of one apphcatlon program However, a
program can have several commands executing at the
same time The message protocol between the program
and backend will use a simple request-answer model
The request message will have a command designator
and a sequence of bytes that contain the arguments The
answer message format will include a response code and
any other data requested by the command Notice that
in contrast to INGRES [STON’76] the backend will not

E+iq
Figure 3 POSTGRES process structure

“Ioad up” the communlcatlon channel with data The
frontend requests a bounded amount of data with each
command

5.2 Query Processing
This section describes the query processmg stra-

tegies that will be implemented In POSTGRES We plan
to implement a conventional query optimizer However,
three extensions are required to support POSTQUEL
First, the query optimizer must be able to take advan-
tage of user-defined access methods Second, a general-
purpose, efficient mechamsm IS needed to support fields
of type POSTQUEL and procedure And third, an
efficient mechanism IS required to support triggers and
rules This sectlon describes our proposed lmplementa-
tlon of these mechamsms

347

5 2 1. Support for New Types
As noted elsewhere [STON861, exlskng access

methods must be usable for new data types, new access
methods must be definable, and query processmg heurts-
tics must be able to optlmlze plans for which new data
types and new access methods are present The basic
idea 1s that an access method can support fast access for
a specific collection of operators In the case of B-trees,
these operators are { <, =, >, > =, < =} Moreover,
these operators obey a collection of rules Again for B-
trees, the rules obeyed by the above set of operators IS

PI) key-l < key-2 and key-2 < key-3
then key-l < key-3

P2) key-l < key-2 lmphes not key-2 < key-l
P3) key-l C key-2 or key-2 < key-l

or key-l = key-2
p4) key-l < = key-2 if key-l C key-2

or key-l = key-2
P5) key-l = key-2 implies key-2 = key-l
P6) key-l > key-2 if key-2 < key-l
ET) key-l > = key-2 if key-2 < = key-l

A B-tree access method ml1 work for any collection of
operators that obey the above rules The protocol for
defining new operators will be similar to the one
described for AJYI’JNGRES [STON83cl Then, a user
need simply declare the collectlon of operators that are to
be utlhzed when he builds an Index, and a detalled syn-
tax 1s presented m ISTON

In addition, the query optlmlzer must be told the
performance of the various access paths Followmg
[SELI79], the required mformatlon wolf be the number of
pages touched and the number of tuples examined when
processing a clause of the form

relation column OPR value

These two values can be Included with the definltlon of
each operator, OPR The other lnformatlon required 1s
the Join selectlvlty for each operator that can partlclpate
in a Join, and what Join processing strategies are feasible
In particular, nested iteration 1s always a feasible stra-
tegy, however both merge;lom and hash-Joln work only In
restrictive cases For each operator, the optimizer must
know whether merge-Join 1s usable and, lf so, what
operator to use to sort each relation, and whether hash-
Jam IS usable Our proposed protocol includes this mfor-
matlon with the definition of each operator

Consequently, a table-driven query optimizer will be
implemented Whenever a user defines new operators,
the necessary mformatlon for the optlmlzer ~111 be placed
in the system catalogs which can be accessed by the
optlmzler For further details, the reader 1s refered else-
where [STON861

5 2 2. Support for Procedural Data
The main performance tactic which we will utilize IS

precomputmg and caching the result of procedural data
This precomputatlon has two steps

1) compllmg an access plan for POSTQUEL commands
2) executing the access plan to produce the answer

When a collection of POSTQUEL commands 1s executed
both of the above steps must be performed Current
systems drop the answer on the floor after obtaining It,
and have special code to invalidate and recompute access

plans (eg [ASTR761) On the other hand, we expect to
cache both the plan and the answer For small answers,
we expect to place the cached value m the field Itself
For larger answers, we expect to put the answer m a
relation created for the purpose and then put the name of
the relation In the field itself where it will serve the role
of a pointer

Moreover, we expect to have a demon which ~11
run m background mode and compile plans utlllzlng oth-
erwise Idle time or idle processors Whenever a value of
type procedure 1s inserted Into the database, the run-
time system will also Insert the identity of the user sub-
mlttmg the command Compllatlon entalls checking the
protection status of the command, and this ~111 be done
on behalf of the submitting user Whenever, a pro-
cedural field 1s executed, the run-time system will ensure
that the user IS authorized to do so In the case of “fast-
path,” the run-time system will require that the execut-
mg user and defining user are the same, so no run-time
access to the system catalogs 1s required This same
demon will also precompute answers In the most for-
tunate of cases, access to procedural data IS mstantane-
ous because the value of the procedure 1s cached In
most cases, a previous access plan should be vahd spar-
ing the overhead of this step

Both the compiled plan and the answer must be
invalidated if necessary The plan must be Invalidated lf
the schema changes mapproprlately, while the answer
must be invalidated if data that it accesses has been
changed We now show that this mvahdatlon can be
efficiently supported by an extended form of locks In a
recent paper [STON85cl we have analyzed other alter-
nate lmplementatlons which can support needed capablll-
ties, and the one we ml1 now present was found to be
attractive in many situations

We propose to support a new kmd of lock, called an
I lock The compatlblhty matrix for I locks 1s shown in
figure 4 When a command IS compiled or the answer
precomputed, POSTGRES will set I locks on all database
obJects accessed during compllatlon or execution These I
locks must be persistent (1 e survive crashes), of fine
granularity (1 e on tuples or even fields), escalatable to
coarser granularity, and correctly detect “phantoms”
[ESWA751 In [STON85al, lt 1s suggested that the best
way to satisfy these goals 1s to place I locks in data
records themselves

R W I

R ok no ok
W no no *
I ok no ok

Figure 4 Compatlblhty modes for I locks

The * In the table m figure 4 mdlcates that a write
lock placed on an obJect containing one or more I locks
~111 simply cause the precomputed obJects holding the I
Iocks to be mvahdated Consequently, they are called
“mvalldate-me” locks A user can Issue a command

348

retrieve (relation I) where quallficatlon

which w111 return the identifiers of commands having I
locks on tuples m questlon In this way a user can see
the consequences of a proposed update

Fields of type POSTQUEL can be compiled and
POSTQUEL fields with no update statements can be
precomputed Fields of type procedure can be compiled
and procedures that do not do mputloutput and do not
update the database can be precomputed

5 2.3 Alerters, Triggers, and Inference
This sectlon describes the tactic we will use to

implement alerters, triggers, and inference

Alerters and triggers are specified by including the
keyword “always” on the command The proposed lmple-
mentatlon of “always” commands IS to run the command
until it ceases to have an effect Then, it should be run
once more and another special kind of lock set on all
0bJect.s which the commands will read or write These T
locks have the compatlblhty matrix shown m figure 5
Whenever a transaction writes a data object on which a
T-lock has been set, the lock manager simply wakes-up
the corresponding “always” command Dormant
“always” commands are stored m a system relation m a
field of type POSTQUEL As with 1 locks, T locks must
be persistent, of fine granularity and escalatable More-
over, the Identity of commands holding T locks can be
obtained through the special field, T added to all rela-
tions

R W I T

ok no ok ok
i no no * #
I ok no ok ok
T ok no ok ok

Figure 5 Compatlblhty modes for T locks

Recall that mferencmg will be support by virtual
fields (1 e , “demand” commands) “Demand” commands
will be Implemented slmllar to the way “always” com-
mands are implemented Each “demand” command
would be run until the collection of objects which it pro-
poses to wr1t.e are isolated Then a D lock IS set on each
such object and the command placed m a POSTQUEL
field m the system catalogs The compatlblhty matrix for
D locks IS shown m figure 6 The “82’ mdlcates that
when a command attempts to read an obJect on which a
D lock has been set, the “demand” command must be
substituted into the command bemg executed usmg an
algorithm slmllar to query modlficatlon to produce a new
command to execute This new command represents a
subgoal which the POSTGRES system attempts to
satisfy If another D lock 1s encountered, a new subgoal
will result, and the process ~11 only terminate when a
subgoal runs to completion and generates an answer

R W I T D

R ok no ok ok &
W no no * # no
I ok no ok ok ok
T ok no ok ok ok
D ok no * # ok

Figure 6 Compatlblhty modes for D locks

Moreover, this answer can be cached m the field and
mvahdated when necessary, If the mtermedlate goal
commands set I locks as they run This process IS a data-
base version of PROLOG style unification [CLOCSl], and
supports a backward chalnmg control flow The algo-
rithm details appear m [STON85b] along with a proposal
for a priority scheme

5 3. Storage System
The database will be partly stored on a magnetic

disk and partly on an archival medium such as an optical
disk Data on magnetic disk includes all secondary
indexes and recent database tuples The optical disk IS
reserved as an archival store contamIng hlstorlcal tuples
There will be a demon which “vacuums” tuples from
magnetic disk to optical disk as a background process
Data on magnetic disk will be stored using the normal
UNIX file system with one relation per file The optical
disk will be organized as one large repository with tuples
from various relations intermixed

All relations will be stored as heaps (as m
[ASTR76]) with an optional collection of secondary
indexes In addltlon relations can be declared “nearly
ordered,” and POSTGRES will attempt to keep tuples
close to sort sequence on some column Lastly, secondary
indexes can be defined, which consist of two separate
physlcal indexes one for the magnetic disk tuples and one
for the optical disk tuples, each m a separate UNIX file
on magnetic disk Moreover, a secondary Index on ~111
automatically be provided for all relabons on a unique
identifier field which 1s described m the next subsection
This index ullll allow any relation to be sequentially
scanned

5 3 1 Data Format
Every tuple has an immutable umque identifier

(IID) that 1s assigned at tuple creation time and never
changes This 1s a 64 bit quanhty assigned internally by
POSTGRES Moreover, each transaction has a unique 64
bit transactlon identifier (XACTID) assigned by
POSTGRES Lastly, there IS a call to a system clock
which can return timestamps on demand Loosely, these
are the current time-of-day

Tuples will have all non-null fields stored adjacently
in a physical record Moreover, there will be a tuple
prefix contaming the followmg extra fields

349

IID immutable id of this tuple
tmin the timestamp at which this tuple

becomes valid
BXID the transaction identifier that

assigned tmm
tmax the timestamp at which this tuple

ceases to be valid
EXID the transaction identifier that

assigned tmax
v-IID the Immutable id of a tuple m this

or some other version
descriptor descriptor on the front of a tuple

The descriptor contains the offset at which each non-null
field starts, and 1s slmllar to the data structure attached
to System R tuples [ASTR761 The first transaction
Identifier and timestamp correspond to the tlmestamp
and ldentlfier of the creator of this tuple When the
tuple 1s updated, It 1s not overwritten, rather the
ldentlfier and timestamp of the updating transaction are
recorded m the second (tlmestamp, transactlon ldentlfier)
slot and a new tuple IS constructed m the database The
update rules are described m the followmg subsection
while the details of version management are deferred to
later m the sectlon

5.3.2. Update and Access Rules
On an insert of a new tuple Into a relation, tmin is

marked with the tlmestamp of the Inserting transaction
and its identity IS recorded m BXID When a tuple 1s
deleted, tmax 1s marked with the tlmestamp of the delet-
ing transactlon and its identity 1s recorded in EXID An
update to a tuple IS modelled as an insert followed by a
delete

To find all the record which have the qualification,
QUAL at time T the run time system must find all mag
netlc disk records such that

1) tmm < T < tmax and BXID and EXID are
committed and QUAL

2) tmm C T and tmax = null and BXID 1s
committed and QUAL

3) tmin C T and BXID = committed and EXID
= not-commltted and QUAL

Then it must find all optical disk records satisfying 1) A
special transaction log IS described below that allows the
DBMS to determine quickly whether a particular tran-
saction has committed

5 3 3 The POSTGRES Log and Accelerator

A new XACTID IS assigned sequentially to each
new transactlon When a transaction wishes to commit,
all data pages which it has wrrtten must be forced out of
memory (or at least onto stable storage) Then a single
bit IS written into the F’GSTGRES log and an optional
transaction accelerator

Consider three transaction identifiers, Tl which IS
the “youngest” transaction Identifier which has been
asslgned, T2 which IS a “young” transaction but
guaranteed to be older than the oldest active transactlon,
and T3 which IS a “young” transactlon that IS older than
the oldest committed transaction which wrote data which
1s still on magnetic disk Assume that Tl-T3 are

recorded m “secure main memory” to be presently
described

For any transactlon with an identifier between Tl
and T2, we need to know which of three states It IS m

0 = aborted
1 = commltted
2 = in-progress

For any transaction W&I an identifier between T2 and
T3, a “2” IS lmposstble and the log can be compressed to
1 bit per transaction For any transaction older than T3,
the vacuum process has wrltten all records to archival
storage During this vacuummg, the updates to all
aborted transactions can be dmcarded, and hence all
archival records correspond to commItted transactlons
No log need be kept for transactions older than T3

The proposed log structure IS an ordered relation,
LOG as follows

lme-ld the access method supplied ordering field
bit-l[lOOOl a bit vector
b&2[10001 a second bit vector

The status of xact number I 1s recorded in bit (remamder
of I &vlded by 1000) of line-id number l/1000

We assume that several thousand beta (say lK-1OK
bytes) of “secure main memory” are available for lo-100
blocks comprlsmg the “tall” of the log Such main
memory IS duplexed or trrplexed and supported by an
umnterruptable power supply The assumed hardware
structure for this memory 1s the followmg Assume a clr-
cular “block pool” of n blocks each of size 2000 blta
When more space IS needed, the oldest block IS reused
The hardware mamtams a pointer which indicates the
current largest xact ldenhfier (Tl - the high water mark)
and which bit It will use It also has a second pointer
which 1s the current oldest transactlon m the buffer (the
low water mark) and which bit It points to When high-
water approaches low-water, a block of the log must be
“rehably” pushed to disk and Joms previously pushed
blocks Then low-water 1s advanced by 1000 High-
water 1s advanced every time a new transactlon IS
started The operations available on the hardware struc-
ture are

advance the high-water (I e begm a xact)
push a block and update low-water
abort a transactlon
commit a transaction

Hopefully, the block pool IS big enough to allow all
transactlons In the block to be committed or aborted
before the block IS “pushed” In this case, the block ~11
never be updated on disk If there are long running tran-
sactions, then blocks may be forced to disk before all
transactlons are committed or aborted In this case, the
subsequent commits or aborts w111 require an update to a
disk-based block and ~111 be much slower Such disk
operations on the LOG relation must be done by a special
transaction (transaction zero) and ~111 follow the normal
update rules described above

A trigger will be used to perlodlcally advance T2
and replace bit-2 with nulls (which don’t consume space)
for any log records that correspond to transactlons now
older than T2

At 5 transactions per second, the LOG relation ~11

350

require about 20 Mbytes per year Although we expect a
substantial amount of buffer space to be avallable, it 1s
clear that high transactlon rate systems will not be able
to keep all relevant portions of the XACT relation In
main memory In this case, the run-time cost to check
whether mdlvldual transactions have been commltted
will be prohlbltlve Hence, an optional transactlon
accelerator which we now describe will be a advanta-
geous addltlon to POSTGRES

We expect that virtually all of the transaction
between T2 and T3 will be commltted transactlons Con-
sequently, we will use a second XACT relation as a
bloom filter [SEVR76] to detect aborted transactions as
follows XACT will have tuples of the form

line-id
ordermg field

the access method supplied

bltmap[M] a bit map of size M

For any aborted transaction with a XACTID between T2
and T3, the followmg update must be performed Let N
be the number of transactlons allocated to each XACT
record and let LOW be T3 - remainder (T3/N)

replace XACT (bltmap[l] = 1)
where XACT line-Id = (XACTID - LOW)modulo N
and I = hash (remainder ((XACTID - LOW) I N))

The vacuum process advances T3 perlodlcally and deletes
tuples from XACT that correspond to transactions now
older than T3 A second trigger ~111 run perlodlcally and
advance T2 performing the above update for all aborted
transactions now older than T2

Consequently, whenever the run-time system wishes
to check whether a candidate transactlon, C-XACTID
between T2 and T3 committed or aborted, it exammes

bitmap1 hash (reamlnder((C-XACTID - LOW) I N))l
If a zero IS observed, then C-XACTID must have commit-
ted, otherwise C-XACTID may have committed or
aborted, and LOG must be examined to discover the true
outcome

The followmg analysis explores the performance of
the transaction accelerator

5.3.4. Analym of the Accelerator
Suppose B bits of mam memory buffer space are

available and that M = 1000 These B bits can either
hold some (or all) of LOG or they can hold some (or all)
of XACT Moreover, suppose transactions have a failure
probablhty of F, and N 1s chosen so that X bita In bitmap
are set on the average Hence, N = X / F In this case,
a collection of Q transactions will require Q bits m LOG
and

Q* F * 1000 / X

bits in the accelerator If this quantity IS greater than Q,
the accelerator IS useless because it takes up more space
than LOG Hence, assume that F * 1000 I X < < 1 In
this case, checking the dlsposltlon of a transactlon m
LOG will cause a page fault with probability

FAULT (LOG) = 1 - [B I Q]
On the other hand, checkmg the dlsposltlon of a transac-
tion In the accelerator will cause a page fault with proba-
bllity

P(XACT) = 1 - (B * X) / (Q * F * 1000)

With probability

x I 1000

a “1” will be observed in the accelerator data structure
If

B < Q * F * 1000 I X

then all available buffer space IS consumed by the
accelerator and a page fault will be assuredly generated
to check In LOG If the transaction cornnutted or aborted
Hence

FAULT (XACT) = P(XACT) + X / 1000

If B IS a larger value, then part of the buffer space can
be used for LOG, and FAULT decreases

The difference In fault probablhty between the log
and the accelerator

delta = FAULT (LOG) - FAULT (XACT)

IS maximized by choosing

X = 1000 * square-root (F)

Figure 7 plots the expected number of faults m both sys-
tems for various buffer sizes with this value for X As
can be seen, the accelerator loses only when there 1s a
mnuscule amount of buffer space or when there IS nearly
enough to hold the whole log Moreover

size (XACT) = square-root (F) * size (LOG)
and if

B = size (XACT)

then the fault probablhty IS lowered from

FAULT (LOG) = 1 - square-root (F)

to

Figure 7 Expected number of faults versus buffer size

FAULT (XACT) = square-root (F)

If F = 01, then buffer requirements are reduced by a
factor of 10 and FAULT from 9 to 1 Even when F =
1, XACT requires only one-third the buffer space, and

cuts the fault probability in half

351

5.3.5 TransactIon Management
If a crash 1s observed for which the disk-based data-

base IS intact, then all the recovery system must do IS
advance T2 to be equal to Tl marking all transactions In
progress at the time of the crash “aborted” After this
step, normal processmg can commence It 1s expected
that recovery from “soft” crashes will be essentially
instantaneous

Protechon from the perils of “hard” crashes, 1 e ones
for which the disk 1s not intact will be provided by mlr-
rormg database files on magnetic disk either on a volume
by volume basis m hardware or on a file by file basis In
software

We envlson a conventional two phase lock manager
handling read and write locks along with I, T and D
locks It 1s expected that R and W locks will be placed in
a conventional main memory lock table, while other
locks will reside In data records The only extension
which we expect to implement IS “obJect locking” In this
sltuatlon, a user can declare that his stored procedures
are to be executed with no locking at all Of course, If
two uses attempt to execute a stored procedure at the
same time, one will be blocked because the first executor
will place a write lock on the executed tuple In this
way, If a collection of users IS wlllmg to guarantee that
there are no “bhnd” accesses to the pieces of obJects (by
someone directly accessing relabons contammg them),
then they can be guaranteed consistency by the place-
ment of normal read and write locks on procedural
obJects and no locks at all on the component objects

5.3 6 Access Methods
We expect to implement both B-tree and OB-tree

[STON83bl secondary indexes Moreover, our ADT facll-
lty supports an arbitrary collection of user defined
indexes Each such index IS, in reality, a pair of indexes
one for magnetic disk records and one for archival
records The first index IS of the form

Index-relation (user-key-or-keys, pointer-to-tuple)

and uses the same structure as current INGRES
secondary indexes The second index will have pointers
to archival tuples and will add “tmm” and “tmax” to
whatever user keys are declared With this structure,
records satlsfymg the quahficatlon

where relation key = value

will be interpreted to mean

where (relatlon[“now”] key = value)

and will require searching only the magnetic disk index
General queries of the form

where relatlon[Tl key = value

will require searching both the magnetic disk and the
archival index Both indexes need only search for
records with quahfylng keys, moreover the archival
Index can further restrict the search using tmax and
tmin

Any POSTQUEL replace command will insert a new
data record with an appropriate BXID and tmm, and
then insert a record into all key Indexes which are
defined, and lastly change tmax on the record to be
updated A POSTQUEL append will only perform the
first and third steps while a delete only performs the

second step Providing a pointer from the old tuple to
the new tuple would allow POSTGRES to insert records
only into Indexes for keys that are modified This optlml-
zatlon saves many disk writes at some expense In run-
time complexity We plan to implement this optlmlza-
tion

The implementor of a new access method structure
need only keep m mmd that the new data record must be
forced from main memory before any index records (or
the index record will point to garbage) and that multiple
index updates (e g page splits) must be forced In the
correct order (1 e from leaf to root) This 1s easily accom-
plished with a single low level command to the buffer
manager

order pagel, page2

Inopportune crashes may leave an access method which
consists of a multi-level tree with dangling index pages
(1 e pages that are not pointed two from anywhere else
In the tree) Such crashes may also leave the heap with
uncommitted data records that cannot be reached from
some indexes Such dangling tuples will be garbage col-
lected by the vacuum process because they will have
EXID equal to not committed Unfortunately If dangling
data records are not recorded in any Index, then a sweep
of memory will be perlodlcaly required to find them
Dangling index pages must be garbage collected by con-
ventional techniques

Ordered relations pose a special problem in our
environment, and we propose to change OB trees slightly
to cope with the situation In particular, each place
there 1s a counter In the orlglnal proposal K9ON83bl
lndlcatmg the number of descendent tuple-identifiers, the
counter must be replaced by the following

counter-l same as counter
flag the danger bit

Any inserter or deleter In an OB tree unll set the danger
flag whenever he updates counter-l Any OB tree acces-
sor who reads a data item with the danger flag set must
interrupt the algorithm and recompute counter-l (by des-
cending the tree) Then he reascends updating counter-l
and resetting the flag After this Interlude, he continues
with his computation In this way the next transaction
“fixes up” the structure left dangling by the previous
inserter or deleter, and OB-trees now work correctly

5 3 7. Vacuummg the Disk
Any record with BXID and EXID of committed can

be written to an optical disk or other long term reposl-
tory Moreover, any records with an BXID or EXID
corresponding to an aborted transaction can be discarded
The Job of a “vacuum” demon IS to perform these two
tasks Consequently, the number of magnetic disk
records 1s nearly equal to the number with EXID equal
to null (1 e the magnetic disk holds the current “state” of
the database) The archival store holds hlstorlcal
records, and the vacuum demon can ensure that ALL
archival records are valid Hence, the run-time
POSTGRES system need never check for the valldlty of
archived records

The vacuum process will first write a hlstorlcal
record to the archival store, then Insert a record in the
IID archival Index, then insert a record in any archival
key Indexes, then delete the record from magnetic disk

352

storage, and finaly delete the record from any magnetic
disk Indexes If a crash occurs, the vacuum process can
simply begm at the start of the sequence agam

If the vacuum process promptly archlves hlstorlcal
records, then one requires disk space for the currently
vahd records plus a small portion of the hIstorIca
records (perhaps about 1 2 times the size of the currently
valid database) AddItIonally, one should be able to
maintain good physical clustermg on the attribute for
which ordering 1s being attempted on the magnetic disk
data set because there IS constant turnover of records

Some users may wish recently updated records to
remam on magnetic disk To accomphsh this tuning, we
propose to allow a user to mstruct the vacuum as follows

vacuum rel-name where QUAL

A reasonable quahficatlon might be

vacuum rel-name where rel-name tmax
< now - 20 days

In this case, the vacuum demon would not remove
records from the magnetic disk representation of rel-
name until the quahficatlon became true

5 3.8. Version Management
Versions will be Implemented by allocating a

differential file [SEVR76] for each separate version The
differential file will contain the tuples added to or sub-
tracted from the base relation Secondary indexes will be
built on versions to correspond to those on the base rela-
tion from which the version 1s constructed

The algorithm to process POSTQUEL commands on
versions 1s to begin with the differential relation
correspondmg to the version itself For any tuple which
satisfies the quallficatlon, the V-IID of the inspected tuple
must be remembered on a list of “seen IID’s” [WOOD831
If a tuple with an IID on the “seen-id” hst 1s encoun-
tered, then It 1s discarded As long as tuples can be
inspected In reverse chronological order, one will always
notice the latest version of a tuple first, and then know to
discard earher tuples If the version IS built on top of
another version, then continue processmg In the
differential file of the next version Ultimately, a base
relation will be reached and the process will stop

If a tuple m a version 1s modified m the current ver-
sion, then It IS treated as a normal update If an update
to the current version modifies a tuple m a previous ver-
sion or the base relation, then the IID of the replaced
tuple will be placed m the V-IID field and an appropriate
tuple inserted Into the dlfferentlal file for the version
Deletes are handled m a slmllar fashion

To merge a version into a parent verston then one
must perform the following steps for each record m the
new version valid at time T

1) If It IS an Insert, then insert record into
older version
2) If it 1s a delete, then delete the record m
the older version
3) If It 1s a replace, then do an insert and a
delete

There 1s a conflict If one attempts to delete an already
deleted record Such cases must be handled external to

the algorithm The tactics In [GARC84] may be helpful
in reconcilmg these conflicts

An older version can be rolled forward into a newer
version by performing the above operahons and then
renaming the older version

6 SUMMARY
POSTGRES proposes to support complex obJects by

supportmg an extendible type system for defining new
columns for relations, new operators on these columns,
and new access methods This faclhty 1s appropriate for
fairly “simple” complex objects More complex ObJects,
especially those with shared subobJects or multiple levels
of nesting, should use POSTGRES procedures as their
defimtlon mechamsm Procedures will be optlmlzed by
caching complled plans and even answers for retrieval
commands

Triggers and rules are supported as commands with
“always” and “demand” modifiers They are efficiently
supported by extensions to the locking system Both for-
ward chaining and backward chaining control structures
are provided wlthm the data manager using these
mechamsms Our rules system should prove attractive
when there are multiple rules which might apply m any
given situation

Crash recovery IS slmphfied by not overwriting data
and then vacuuming tuples to an archive store The new
storage system 1s greatly slmphfied from current technol-
ogy and supports time-oriented access and versions with
little difficulty The major cost of the storage system IS
the requirement to push dirty pages of data to stable
storage at commit time

An optical disk IS used effectively as an archival
medium, and POSTGRES has a collection of demons run-
ning m the background These can effectively utilize
otherwise idle processors Custom hardware could
effectively provide stable maln memory, support for the
LOG relation, and support for run-time checkmg of tuple
vahdlty

Lastly, these goals are accomplished with no
changes to the relational model at all At the current
time coding of POSTGRES 1s Just beglnnlng We hope to
have a prototype running m about a year

ACKNOWLEDGEMENTS

Research sponsored by the Air Force Office of
Sclenhfic Research Grant 83-0254, Defense Advanced
Research Projects Agency under contract N39-82-0235,
and National Science Foundation Grant DMC-85-04633

REFERENCES

[ADIBBOI Adlba, ME and Lindsay, B G,
“Database Snapshots,” IBM San
Jose Res Tech Rep RJ-2772,
March 1980

[AFSA851 Afasarmanesh, H , et al, “An
Extensible ObJect-Oriented
Approach to Database for
VLSI/CAD,” Proc 1985 Very Large

353

[ALLM761

[ASTR761

[ATKI84]

[BUNE791

[CLOC811

[CODD701

[COPE841

[DERR851

[DEW1851

[ESWA751

[GARC841

[HELD751

[GUTM841

Data Base Conference, Stockholm,
Sweden, August 1985

Allman, E , et al, “Embedding a
Relational Data Sublanguage m a
General Purpose Programming
Language,” Proc 1976 ACM-
SIGPLAN-SIGMOD Conference on
Data, Salt Lake City, Utah, March
1976

Astrhan, M et al, “System R A
Relational Approach to Data,”
ACM-TODS, June 1976

Atkmson, M P et al, “Progress
with Persistent Programmmg,” m
Database, Role and Structure (ed
P Stocker), Cambridge Umverlsty
of Press, 1984

Bunemann, P and Clemons, E ,
“Efficiently Monitoring Relational
Data Bases,” ACM-TODS, Sept
1979

Clocksm, W and Melhsh, C , “Pro-
g-ramming m Prolog,” Sprmger-
Verlag, Berlin, Germany, 1981

Codd, E, “A Relational Model of
Data for Large Shared Data Bases,”
CACM, June 1970

Copeland, G and D Maler, “Mak-
mg Smalltalk a Database System,”
Proc 1984 ACM-SIGMOD Confer-
ence on Management of Data, Bos-
ton, Mass June 1984

Derrltt, N , Personal Commumca-
tlon, HP Laboratories, October
1985

Dewitt, D J and Carey, M J,
“Extensible Database Systems,”
Proc 1st InternatIonal Workshop on
Expert Data Bases, Klowah, SC ,
Ott 1984

Eswaren, K , “A General Purpose
Trigger Subsystem and Its Inclusion
m a Relational Data Base System,”
IBM Research, San Jose, Ca, RJ
1833, July 1976

Garcia-Molma, H , et al, “Data-
Patch Integratmg Inconsistent
copies of a Database after a Parti-
tion,” Tech Rep TR# 304, Dept
Elec Eng and Comp Scl , Prmce-
ton Umv , 1984

Held, G et al, “INGRES A Rela-
tlonal Data Base System,” Proc

1975 Natlonal Computer Confer-
ence, Anaheim, Ca , June 1975

Gutman, A, “R-trees A Dynamic
Index Structure for Spatial Search-
ing,” Proc 1984 ACM-SIGMOD
Conference on Management of
Data, Boston, Mass June 1984

[JARK85]

[KATZ851

[KUNG84]

L

LORI831

LUM851

[ROB1811

[ROWE791

[ROWE821

[ROWE851

[SELI79]

[SEVR761

[STON751

[STON761

354

Jarke, M et al, “Data Construc-
tors On the Integrahon of Rules
and Relations,” Proc 1985 Very
Large Data Base Conference, Stock-
holm, Sweden, August 1985

Katz, R H , Information Manage-
ment for Engineering Design,
Sprmger-Verlag, 1985

Kung, R et al, “Heurlstlc Search
m Database Systems,” Proc 1st
International Workshop on Expert
Data Bases, Klowah, SC , Ott
1984

Lorle, R , and Plouffe, W, “Complex
ObJects and Their Use m Desmg
Transactions,” Proc Eng Design
Apphcatlons of ACM-IEEE Data
Base Week, San Jose, CA, May
1983

Lum, V , et al, “Design of an
Integrated DBMS to Support
Advanced Appllcatlons,” Proc Int
Conf on Foundations of Data Org ,
Kyoto Umv , Japan, May 1985

Robinson, J , “The K-D-B Tree A
Search Structure for Large Multldl-
menslonal Indexes,” Proc 1981
ACM-SIGMOD Conference on
Management of Data, Ann Arbor,
Mlch , May 1981

Rowe, LA and Shoens, K , “Data
Abstraction, Views, and Updates m
Rlgel,” Proc 1979 ACM-SIGMOD
Conference on Management of
Data, Boston, MA, May 1979

Rowe, LA and Shoens, K “FADS -
A Forms Apphcatlon Development
System,” Proc 1982 ACM-SIGMOD
Conference on Management of
Data, Orlando, FL, June 1982

Rowe, L, “F&m-the-Form Pro-
gramming,” Proc 1985 Very Large
Data Base Conference, Stockholm,
Sweden, August 1985
Selmger, P et al, “Access Path
Selection m a Relational Data Base
System,” Proc 1979 ACM-SIGMOD
Conference on Management of
Data, Boston, Mass, June 1979

Severence, D, and Lohman, G,
“Differential Files Their Apphca-
tlon to the Maintenance of large
Databases,” ACM-TODS, June
1976
Stonebraker, M , “Implementation
of Integrity Constraints and Views
by Query Modlficatlon,” Proc 1975
ACM-SIGMOD Conference, San
Jose, Ca , May 1975
Stonebraker, M , et al “The Design
and Implementation of INGRES,”

[STON81]

[STON83al

[STON83bl

[STON83cl

[STON84aJ

[STON84bl

[STON85al

[STON85bl

[STON85cl

[STON861

[TICH821

[TSIC82]

[ULLMSBI

[WONG841

ACM-TODS, September 1976

Stonebraker, M , “Operatmg System
Support for Database Manage-
ment,” CACM, July 1981

Stonebraker, M , et al, “Perfor-
mance Analysis of a Dlstrlbuted
Data Base System,” Proc 3th Sym-
possum on Rehablllty In Dlstrlbuted
Software and Data Base Systems,
Clearwater, Fla, Ott 1983

[WOOD831

[ZANI831

Stonebraker, M , “Document Pro-
cessing m a Relational Database
System,” ACM TOOIS, April 1983

Stonebraker, M , et al, “Apphca-
tlon of Abstract Data Types and
Abstract Indexes to CAD Data,”
Rot Engineering Apphcatlons
Stream of 1983 Data Base Week,
San Jose, Ca , May 1983

Stonebraker, M et al, “QUEL as a
Data Type,” Proc 1984 ACM-
SIGMOD Conference on Manage-
ment of Data, Boston, Mass, June
1984

Stonebraker, M and Rowe, LA,
“PORTALS A New Apphcakon
Program Interface,” Proc 1984
VLDB Conference, Singapore, Sept
1984

Stonebraker, M , “Extendmg a Data
Base System with Procedures,”
(subnutted for pubhcatlon)

Stonebraker, M , “Triggers and
Inference m Data Base Systems,”
ROC Islamoora Conference on
Expert Data Bases, Islamoora, Fla ,
Feb 1985, to appear as a Sprmger-
Verlag book

Stonebraker, M et al, “An
Analysis of Rule Indexmg Imple-
mentations m Data Base Systems,”
(submitted for pubhcatlon)

Stonebraker, M , Yncluslon of New
Types m Relational Data Base Sys-
tems,” Rot Second International
Conference on Data Base Engmeer-
mg, Los Angeles, Ca , Feb 1986

Tlchy, W F, “Design, Implementa-
tion, and Evaluation of a Revlslon
Control System, Rot 6th Int Conf
on Soft Eng , Sept 1982

Tslchrltzls, D C “Form Manage-
ment,” CACM 25, July 1982

Ullman, J , “Implementation of Log-
ical Query Languages for Data
Bases,” Proceedmgs of the 1985
ACM-SIGMOD International
Conference on Management of
Data, Austin, TX, May 1985

Wong, E , et al, “Enhancmg
INGRES with Deductive Power,”

Proceedings of the 1st International
Workshop on Expert Data Base Sys-
tems, Klowah SC, October 1984

Woodfill, J and Stonebraker, M,
“An Implementation of Hypothetl-
cal Relations,” Proc 9th VLDB
Confernece, Florence, Italy, Dee
1983

Zamolo, C , “The Database
Language GEM,” Proc 1983 ACM-
SIGMOD Conference on Manage-
ment of Data, San Jose, Ca, May
1983

355

