
Q

Q

A v i S i l b e r s c h a t z
M i c h a e l S t o n e b r a k e r

J e f f U l l m a n
E d i t o r s

I ~ 0 October 1991/Vol.34, No.10/GOMMUNIGATION$ OF THE AOM

he history of database system research is one of exceptional
productivity and startling economic impact. Barely 20 years
old as a basic science research field, database research has

fueled an information services industry estimated at $10 billion per year
in the U.S. alone. Achievements in database research underpin funda-
mental advances in communications systems, transportation and
logistics, financial management, knowledge-based systems, accessibility
to scientific literature, and a host of other civilian and defense applica-
tions. They also serve as the foundation for considerable progress in
basic science in various fields ranging from computing to biology.-. . . -- .-

As impressive as the accomplish-
ments of basic database research
have been, there is a growing
awareness and concern that only
the surface has been scratched in
developing an understanding of
the database principles and tech-
niques required to support the ad-
vanced information management
applications that are expected to
revolutionize industrialized econo-
mies early in the next century.
Rapid advances in areas such as
manufacturing science, scientific
visualization, robotics, optical stor-
age, and high-speed communica-
tions already threaten to over-
whelm the existing substrate of
database theory and practice.

In February 1990, the National
Science Foundation convened a
workshop in Palo Alto, California
for the purpose of identifying the
technology pull factors that will serve
as forcing functions for advanced
database technology and the corre-
sponding basic research needed to
enable that technology. The partici-
pants included representatives
from the academic and industrial
sides of the database research com-
munity. 1 The primary conclusions
of the workshop participants can be

IThe workshop was attended by Michael Bro-
die, Peter Buneman, Mike Carey, Ashok
Chandra, Hector Garcia-Molina, Jim Gray,
Ron Fagin, Dave Lomet, Dave Maier, Marie
Ann Niemat, Avi Silberschatz, Michael
Stonebraker, Irv Traiger, Jeff Ullman, Gio
Wiederhold, Carlo Zaniolo, and Maria
Zemankova.

summarized as follows:

1. A substantial number of the ad-
vanced technologies that will
underpin industrialized econo-
mies in the early 21st century
depend on radically new data-
base technologies that are cur-
rently not well understood, and
that require intensive and sus-
tained basic research.

2. Next-generation database appli-
cations will have little in com-
mon with today's business data
processing databases. They will
involve much more data, require
new capabilities including type
extensions, multimedia support,
complex objects, rule process-
ing, and archival storage, and
will necessitate rethinking the
algorithms for almost all DBMS
operations.

3. The cooperation among differ-
ent organizations on common
scientific, engineering, and com-
mercial problems will require
large-scale, heterogeneous, dis-
tributed databases. Very difficult
problems lie ahead in the areas
of inconsistent databases, secu-
rity, and massive scale-up of dis-
tributed DBMS technology.
This article provides further in-

formation about these topics, as
well as a brief description of some
of the important achievements of
the database research community.

Background and Scope
The database research community

has been in existence since the late
1960s. Starting with modest repre-
sentation, mostly in industrial re-
search laboratories, it has expanded
dramatically over the last two dec-
ades to include substantial efforts at
major universities, government lab-
oratories and research consortia.
Initially, database research cen-
tered on the management of data in
business applications such as auto-
mated banking, record keeping,
and reservation systems. These
applications have four require-
ments that characterize database
systems:
• Efficiency in the access to and

modification of very large
amounts of data;

• Resilience, or the ability of the
data to survive hardware crashes
and software errors, without sus-
taining loss or becoming incon-
sistent;

• Access control, including simulta-
neous access of data by multiple
users in a consistent manner and
assuring only authorized access to
information; and

• Persistence, the maintenance o f
data over long periods of time,
independent o f any programs
that access the data.

Database systems research has cen-
tered around methods for design-
ing systems with these characteris-
tics, and around the languages and
conceptual tools that help users to
access, manipulate, and design
databases.

COMMUNICATIONS OF THE ACM/October 1991/Vo1.34, No.10 111

Database management systems
(DBMSs) are now used in almost
every computing environment to
organize,, create and maintain im-
portant collections o f information.
The technology that makes these
systems possible is the direct result
of a successful program of database
research. This article will highlight
some important achievements o f
the database research community
over the past two decades, includ-
ing the scope and significance of
the technological transfer o f data-
base research results to industry.
We focus on the major accomplish-
ments o f relational databases,
transaction management, and dis-
tributed databases.

Today, we stand at the threshold
of applying database technology in
a variety of new and important di-
rections, including scientific data-
bases, design databases, and uni-
versal access to information. Later
in this article we pinpoint two key
areas in which research will make a
significant impact in the next few
years: next-generation database
applications and heterogeneous,
distributed databases.

Accomplllshments Of the Last
TWO Decades
From among the various directions
that the database research commu-
nity has explored, the following
three have perhaps had the most
impact: relational database systems,
transaction management, and dis-
tributed database systems.

Each has fundamentally affected
users o f database systems, offering
either radical simplifications in
dealing with data, or great en-
hancement of their capability to
manage information.

Relational Databases
In 1970 there were two popular
approaches used to construct data-
base management systems. The
first approach, exemplified by
IBM's Information Management
System (IMS), has a data model
(mathematical abstraction of data
and operations on data) that re-

quires all data records to be assem-
bled into a collection o f trees. Con-
sequently, some records are root
records and all others have unique
parent records. The query lan-
guage permitted an application
programmer to navigate from root
records to the records of interest,
accessing one record at a time.

The second approach was typi-
fied by the standards of the Confer-
ence on Data Systems Languages
(CODASYL). They suggested that
the collection of DBMS records be
arranged into a directed graph.
Again, a navigational query lan-
guage was defined, by which an
application program could move
from a specific entry point record
to desired information.

Both the tree-based (called hier-
archical) and graph-based (net-
work) approaches to data manage-
ment have several fundamental
disadvantages. Consider the follow-
ing examples:

1. To answer a specific database
request, an application pro-
grammer, skilled in performing
disk-oriented optimization, must
write a complex program to nav-
igate through the database. For
example, the company president
cannot, at short notice, receive a
response to the query "How
many employees in the Widget
depar tment will retire in the
next three years?" unless a pro-
gram exists to count departmen-
tal retirees.

2. When the structure of the data-
base changes, as it will whenever
new kinds of information are
added, application programs
usually need to be rewritten.

As a result, the database systems of
1970 were costly to use because o f
the low-level interface between the
application program and the
DBMS, and because the dynamic
nature of user data mandates con-
tinued program maintenance.

The relational data model, pio-
neered by E. F. Codd in a series of
papers in 1970-72, offered a fun-
damentally different approach to

data storage. Codd suggested that
conceptually all data be repre-
sented by simple tabular data struc-
tures (relations), and that users ac-
cess data through a high-level,
nonprocedural (or declarative)
query language. Instead of writing
an algorithm to obtain desired rec-
ords one at a time, the application
programmer is only required to
specify a predicate that identifies
the desired records or combination
of records. A query optimizer in the
DBMS translates the predicate
specification into an algorithm to
perform database access to solve
the query. These nonprocedural
languages are dramatically easier to
use than the navigation languages
of IMS and CODASYL; they lead
to higher p rogrammer productivity
and facilitate direct database access
by end users.

During the 1970s the database
research community extensively
investigated the relational DBMS
concept. They:

• Invented high-level relational
query languages to ease the use
o f the DBMS by both end users
and application programmers.
The theory of higher-level query
languages has been developed to
provide a firm basis for under-
standing and evaluating the ex-
pressive power of database lan-
guage constructs.

• Developed the theory and algo-
rithms necessary to optimize que-
r i e s - t h a t is, to translate queries
in the high-level relational query
languages into plans that are as
efficient as what a skilled pro-
grammer would have written
using one of the earlier DBMSs
for accessing the data. This tech-
nology probably represents the
most successful experiment in
optimization of very high-level
languages among all varieties o f
computer systems.

• Formulated a theory o f normaliza-
tion to help with database design
by eliminating redundancy and
certain logical anomalies from
the data.

112 October 1991/Vo1.34, NO.10/COMMUNIGATIONSOFTHE ACM

P H I H H) t) Y) I t III
• , i

• Constructed algorithms to allo-
cate tuples of relations to pages
(blocks of records) in files on sec-
ondary storage, to minimize the
average cost of accessing those
tuples.

• Constructed buffer management
algorithms to exploit knowledge
of access patterns for moving
pages back and forth between
disk and a main memory buffer
pool.

• Constructed indexing techniques
to provide fast associative access
to random single records and/or
sets of records specified by values
or value ranges for one or more
attributes.

• Implemented prototype rela-
tional DBMSs that formed the
nucleus for many of the present
commercial relational DBMSs.

As a result of this research in the
1970s, numerous commercial prod-
ucts based on the relational concept
appeared in the 1980s. Not only
were the ideas identified by the re-
search community picked up and
used by the vendors, but also, sev-
eral of the commercial develop-
ments were led by implementors of
the earlier research prototypes.
Today, commercial relational data-
base systems are available on virtu-
ally any hardware platform from
personal computer to mainframe,
and are standard software on all
new computers in the 1990s.

There is a moral to be learned
from the success of relational data-
base systems. When the relational
data model was first proposed, it
was regarded as an elegant theoret-
ical construct but implementable
only as a toy. It was only with con-
siderable research, much of it fo-
cused on basic principles of rela-
tional databases, that large-scale
implementations were made possi-
ble. The next generation of data-
bases calls for continued research
into the foundations of database
systems, in the expectation that
other such useful "toys" will
emerge.

Transaction Management
During the last two decades, data-
base researchers have also pio-
neered the transaction concept. A
transaction is a sequence of opera-
tions that must appear "atomic"
when executed. For example, when
a bank customer moves $100 from
account A to account B, the data-
base system must ensure that either
both of the operat ions--Debi t A
and Credit B - - h a p p e n or that nei-
ther happens (and the customer is
informed). If only the first occurs,
then the customer has lost $100,
and an inconsistent database state
results.

To guarantee that a transaction
transforms the database from one
consistent state to another requires
that:

1. The concurrent execution of
transactions must be such that
each transaction appears to exe-
cute in isolation. Concurrency con-
trol is the technique used to pro-
vide this assurance.

2. System failures, either of hard-
ware or software, must not result
in inconsistent database states. A
transaction must execute in its
entirety or not at all. Recovery is
the technique used to provide
this assurance.

Concurrent transactions in the
system must be synchronized cor-
rectly in order to guarantee that
consistency is preserved. For in-
stance, while we are moving $100
from A to B, a simultaneous move-
ment of $300 from account B to
account C should result in a net
deduction of $200 from B. The
view of correct synchronization of
transactions is that they must be
serializable; that is, the effect on the
database of any number of transac-
tions executing in parallel must be
the same as if they were executed
one after another, in some order.

During the 1970s and early
1980s the DBMS research commu-
nity worked extensively on the
transaction model. First, the theory
of serializability was worked out
in detail, and precise definitions of

the correctness of schedulers
(algorithms for deciding when
transactions could execute) were
produced. Second, numerous con-
currency control algorithms were
invented that ensure serializability.
These included algorithms based
on

• Locking data items to prohibit
conflicting accesses. Especially
important is a technique called
two-phase locking, which guaran-
tees serializability by requiring a
transaction to obtain all the locks
it will ever need before releasing
any locks.

• Timestamping accesses so the
system could prevent violations
of serializability.

• Keeping multiple versions O f data
objects available.

The various algorithms were sub-
jected to rigorous experimental
studies and theoretical analysis to
determine the conditions under
which each was preferred.

Recovery is the other essential
component of transaction manage-
ment. We must guarantee that all
the effects of a transaction are in-
stalled in the database, or that none
of them are, and this guarantee
must be kept even when a system
crash loses the contents of main
memory. During the late 1970s and
early 1980s, two major approaches
to this service were investigated,
namely:

Write-ahead logging. A summary of
the effects of a transaction is stored
in a sequential file, called a log, be-
fore the changes are installed in the
database itself. The log is on disk or
tape where it can survive system
crashes and power failures. When a
transaction completes, the logged
changes are then posted to the
database. If a transaction fails to
complete, the log is used to restore
the prior database state.

Shadowfile techniques. New copies of
entire data items, usually disk
pages, are created to reflect the ef-
fects of a transaction and are writ-

C O M M U N I C A T I O N S OF T H E ACM/October 1991/Vol,34, No.10 113

ten to the disk in entirely new loca-
tions. A single atomic actio n remaps
the data pages, so as to substitute
the new versions for the old when
the transaction completes. I f a
transaction fails, the new versions
are discarded.

Recovery techniques have been ex-
tended to cope with the failure o f
the stable medium as well. A
backup copy of the data is stored on
an entirely separate device. Then,
with logging, the log can be used to
roll forward the backup copy to the
current state.

Distributed Databases
A third area in which the DBMS
research community played a vital
role is distributed databases. In the
late 1970s there was a realization
that organizations are fundamen-
tally decentralized and require
databases at multiple sites. For ex-
ample, information about the Cali-
fornia customers of a company
might be stored on a machine in
Los AngelLes, while data about the
New England customers could exist
on a machine in Boston. Such data
distribution moves the data closer
to the people who are responsible
for it and reduces remote commu-
nication costs.

Furthermore, the decentralized
system is more likely to be available
when crashes occur. I f a single, cen-
tral site goes down, all data is un-
available. However, if one of sev-
eral regional sites goes down, only
part o f the total database is inacces-
sible. Moreover, if the company
chooses to pay the cost of multiple
copies o f important data, then a
single site failure need not cause
data inaccessibility.

In a multidatabase environment
we strive to provide location trans-
parency. "]['hat is, all data should
appear to the user as if they are lo-
cated at hiis or her particular site.
Moreover, the user should be able
to execute normal transactions
against such data. Providing loca-
tion transparency required the
DBMS research community to in-

vestigate new algorithms for dis-
tributed query optimization, con-
currency control, crash recovery,
and support of multiple copies of
data objects for higher perfor-
mance and availability.

In the early 1980s the research
community rose to this challenge.
Distributed concurrency control
algorithms were designed, imple-
mented and tested. Again, simula-
tion studies and analysis compared
the candidates to see which algo-
rithms were dominant. The funda-
mental notion of a two-phase com-
mit to ensure the possibility of crash
recovery in a distributed database
was discovered. Algorithms were
designed to recover from processor
and communication failures, and
data patch schemes were put for-
ward to rejoin distributed databases
that had been forced to operate
independently after a network fail-
ure. Technology for optimizing dis-
tributed queries was developed,
along with new algorithms to per-
form the basic operations on data in
a distributed environment. Finally,
various algorithms for the update
of multiple copies of a data item
were invented. These ensure that
all copies o f each item are consis-
tent.

All the major DBMS vendors are
presently commercializing distrib-
uted DBMS technology. Again we
see the same pattern discussed ear-
lier for relational databases and
transactions, namely aggressive re-
search support by government and
industry, followed by rapid tech-
nology transfer from research labs
to commercial products.

The Next Challenges
Some might argue that database
systems are a mature technology
and it is therefore time to refocus
research onto other topics. Cer-
tainly relational DBMSs, both cen-
tralized and distributed, are well
studied, and commercialization is
well along. Object management
ideas, following the philosophy of
object-oriented programming, have
been extensively investigated over

the last few years and should allow
more general kinds of data ele-
ments to be placed in databases
than the numbers and character
strings supported in traditional sys-
tems. The relentless pace of ad-
vances in hardware technology
makes CPUs, memory and disks
drastically cheaper each year. Cur-
rent databases will therefore be-
come progressively cheaper to de-
ploy as the 1990s unfold. Perhaps
the DBMS area should be declared
solved, and energy and research
efforts allocated elsewhere.

We argue strongly here that such
a turn o f events would be a serious
mistake. Rather, we claim that solu-
tions to the important database
problems of the year 2000 and be-
yond are not known. Moreover,
hardware advances o f the next de-
cade will not make brute force solu-
tions economical, because the scale
of the prospective applications is
simply too great.

In this section we highlight two
key areas in which we feel impor-
tant research contributions are re-
quired in order to make future
DBMS applications viable: Next-
generation database applications
and heterogeneous, distributed
databases.

In addition to being important
intellectual challenges in their own
right, their solutions offer products
and technology of great social and
economic importance, including
improved delivery of medical care,
advanced design and manufactur-
ing systems, enhanced tools for sci-
entists, greater per capita produc-
tivity through increased personal
access to information, and new mil-
itary applications.

The Research Agenda for
Next-Generation DBMS
Applications
To motivate the discussion of re-
search problems that follows, in this
section we present several examples
of the kinds of database applica-
tions that we expect will be built
during the next decade.

1. For many years, NASA scientists

114 October 1991/Vo].34, No.]O/COMMUNIC, ATIONS OF THE ACM

) H I H H) L) Y) I t III

have been collecting vast
amounts of information from
space. They estimate that they
require storage for 1016 bytes of
data (about 10,000 optical disk
jukeboxes) just to maintain a few
years' worth of satellite image
data they will collect in the
1990s. Moreover, they are very
reluctant to throw anything
away, lest it be exactly the data
set needed by a future scientist
to test some hypothesis. It is un-
clear how this database can be
stored and searched for relevant
images using current or soon-to-
be available technology.

2. Databases serve as the backbone
of computer-a ided design sys-
tems. For example, civil engi-
neers envision a facilities-engi-
neer ing design system that
manages all information about a
project, such as a skyscraper.
This database must maintain
and integrate information about
the project from the viewpoints
of hundreds of subcontractors.
For example, when an electri-
cian puts a hole in a beam to let a
wire through, the load-bearing
soundness of the structure could
be compromised. The design
system should, ideally, recalcu-
late the stresses, or at the least,
warn the cognizant engineer
that a problem may exist.

3. The National Institutes of
Health (NIH) and the U.S. De-
par tment of Energy (DOE) have
embarked on a jo int national ini-
tiative to construct the DNA se-
quence corresponding to the
human genome. The gene se-
quence is several billion ele-
ments long, and its many subse-
quences define complex and
variable objects. The matching
of individuals ' medical problems
to differences in genetic makeup
is a staggering problem and will
require new technologies of data
representat ion and search.

4. Several large depa r tmen t stores
already record every product-
code-scanning action of every
cashier in every store in their

5.

chain. Buyers run ad-hoc que-
ries on this historical database in
an a t tempt to discover buying
pat terns and make stocking de-
cisions. This application taxes
the capacity of available disk sys-
tems. Moreover, as the cost of
disk space declines, the retail
chain will keep a larger and
larger history to track buying
habits more accurately. This
process of "mining" data for
h idden pat terns is not limited to
commercial applications. We
foresee similar applications,
often with even larger databases,
in science, medicine, intelligence
gathering, and many other
areas.
Most insurance firms have a sub-
stantial on-line database that
records the policy coverage of
the firm's customers. These
databases will soon be enhanced
with multimedia data such as pho-
tographs of p roper ty damaged,
digitized images of handwri t ten
claim forms, audio transcripts of
appraisers ' evaluations, images
of specially insured objects, and
so on. Since image data is ex-
ceedingly large, such databases
will become enormous. More-
over, future systems may well
store video walk-throughs of
houses in conjunction with a
homeowners policy, fur ther en-
larging the size of this class of
databases. Again, applications of
this type are not limited to com-
mercial enterprises.

These applications not only in-
t roduce problems of size, they also
introduce problems with respect to
all conventional aspects of DBMS
technology (e.g., they pose funda-
mentally new requirements for
access patterns, transactions, con-
currency control, and data repre-
sentation). These applications have
in common the proper ty that they
will push the limits of available
technology for the foreseeable fu-
ture. As comput ing resources be-
come cheaper, these problems are
all likely to expand at the same or at

a faster rate. Hence, they cannot be
overcome simply by waiting for the
technology to br ing comput ing
costs down to an acceptable level.

We now turn to the research
problems that must be solved to
make such next-generat ion applica-
tions work. Next-generat ion appli-
cations require new services in sev-
eral different areas in o rde r to
succeed.

New Kinds of Data
Many next-generat ion applications
entail storing large and internally
complex objects. The insurance
example, (5) requires storage of
images. Scientific and design data-
bases often deal with very large ar-
rays or sequences of data elements.
A database for software engineer-
ing might store p rogram state-
ments, and a chemical database
might store protein structures. We
need solutions to two classes of
problems: data access and data type
management .

Curren t databases are opt imized
for delivering small records to an
application program. When fields
in a record become very large, this
parad igm breaks down. The DBMS
should read a large object only once
and place it directly at its final desti-
nation. Protocols must be designed
to chunk large objects into manage-
able size pieces for the application
to process. A new generat ion of
query languages will be required to
suppor t querying o f array and se-
quence data as will mechanisms for
easily manipulat ing disk and ar-
chive representat ions of such ob-
jects. In addit ion, ex tended storage
structures and indexing techniques
will be needed to suppor t efficient
processing of such data.

A second class of problems con-
cerns type management . There
must be a way for the p rog rammer
to construct the types appropr ia te
for his or her application. The need
for more flexible type systems has
been one of the major forces in the
development of object-oriented
databases. One of the drawbacks of
the systems developed so far is that

COMMUNICATIONS OF THE ACM/October 1991/Vol.34, No.10 ! ~

M a n y o f t h e n e w a p p l i c a t i o n s w i l l
i n v o l v e p r i m i t i v e c o n c e p t s n o t

f o u n d i n m o s t c u r r e n t a p p l i c a t i o n s .

type-checking is largely dynamic,
which lay:s open the possibility that
programming errors tend to show
up at run time, not during compila-
tion. In order to provide the data-
base application designer with the
same safety nets that are provided
by modern high-level program-
ming languages, we must deter-
mine how we can combine static
type disciplines with persistent data
and evolution of the database struc-
ture over time.

Rule Processing
Next-generation applications will
frequently involve a large number
of rules, which take declarative ("if A
is true, then B is true"), and impera-
tive ("ifA is true, then do C") forms.
For example, a design database
should notify the proper designer if
a modification by a second designer
may have affected the subsystem
that is the responsibility of the first
designer. Such rules may include
elaborate constraints that the de-
signer wants enforced, triggered
actions that require processing
when specific events take place, and
complex deductions that should be
made automatically within the sys-
tem. It is ,common to call such sys-
tems knowledge-base systems, al-
though we prefer to view them as a
natural, although difficult, exten-
sion o f DBMS technology.

Rules have received considerable
at tent ion as the mechanism for trig-
gering, data mining (as discussed in
the depar tment store example),
and other forms of reasoning about
data. Declarative rules are advanta-
geous because they provide a logi-
cal declaration of what the user
wants rather than a detailed specifi-
cation of how the results are to be
obtained. Similarly, imperative

rules allow for a declarative specifi-
cation o f the conditions under
which a certain action is to be taken.
The value of declarativenes in rela-
tional query languages like SQL
(the most common such language)
has been amply demonstrated, and
an extension of the idea to the next
generation of query languages is
desirable.

Traditionally, rule processing
has been performed by separate
subsystems, usually called expert
system shells. However, applica-
tions such as the notification exam-
ple cannot be done efficiently by a
separate subsystem, and such rule
processing must be performed di-
rectly by the DBMS. Research is
needed on how to specify the rules
and on how to process a large rule
base efficiently. Although consider-
able effort has been directed at
these topics by the artificial intelli-
gence (AI) community, the focus
has been on approaches that as-
sume all relevant data structures
are in main memory, such as RETE
networks. Next-generation applica-
tions are far too big to be amenable
to such techniques.

We also need tools that will allow
us to validate and debug very large
collections of rules. In a large sys-
tem, the addition of a single rule
can easily introduce an inconsis-
tency in the knowledge base or
cause chaotic and unexpected ef-
fects and can even end up repeat-
edly firing itself. We need tech-
niques to decompose sets of rules
into manageable components and
prevent (or control in a useful way)
such inconsistencies and repeated
rule firing.

N e w C o n c e p t s in Data Models
Many of the new applications will

involve primitive concepts not
found in most current applications,
and there is a need to build them
cleanly into specialized or extended
query languages. Issues range from
efficiency of implementation to the
fundamental theory underlying
important primitives. For example,
we need to consider:

Spatial Data. Many scientific data-
bases have two- or three-dimen-
sional points, lines, and polygons as
data elements. A typical search is to
find the 10 closest neighbors to
some given data element. Solving
such queries will require sophisti-
cated, new multidimensional access
methods. There has been substan-
tial research in this area, but most
has been oriented toward main
memory data structures, such as
quad trees and segment trees. The
disk-oriented structures, including
K-D-B trees and R-trees, do not
perform particularly well when
given real-world data.

Time. In many exploratory applica-
tions, one might wish to retrieve
and explore the database state as o f
some point in the past or to retrieve
the time history o f a particular data
value. Engineers, shopkeepers, and
physicists all require different no-
tions of time. No support for an
algebra over time exists in any cur-
rent commercial DBMS, although
research prototypes and special-
purpose systems have been built.
However, there is not even an
agreement across systems on what a
"time interval" is; for example, is it
discrete or continuous, open-ended
or closed?

Uncertainty. There are applications,
such as identification o f features

1 1 ~ October 1991/Vo1.34, No.10/COMMUNICATIONS OF THE ACM

) H I H I} H) L))') I t III
• J

N e x t - g e n e r a t i o n a p p l i c a t i o n s o f t e n
a i m t o f a c i l i t a t e c o l l a b o r a t i v e a n d

i n t e r a c t i v e a c c e s s t o a d a t a b a s e .

from satellite photographs, for
which we need to attach a likeli-
hood that data represents a certain
phenomenon. Reasoning under
uncertainty, especially when a con-
clusion must be derived from sev-
eral interrelated partial or alterna-
tive results, is a problem that the AI
community has addressed for many
years, with only modest success.
Fur ther research is essential, as we
must learn not only to cope with
data of limited reliability, but to do
so efficiently, with massive amounts
of data.

Scaling Up
It will be necessary to scale all
DBMS algorithms to operate effec-
tively on databases of the size con-
templated by next-generat ion ap-
plications, often several orders of
magni tude bigger than the largest
databases found today. Databases
larger than a terabyte (10 TM bytes)
will not be unusual. The current
architecture of DBMSs will not
scale to such magnitudes. For ex-
ample, cur rent DBMSs build a new
index on a relation by locking it,
bui lding the index and then releas-
ing the lock. Building an index for
a 1-terabyte table may require sev-
eral days of computing. Hence, it is
imperative that algorithms be de-
signed to construct indexes incre-
mentally without making the table
being indexed inaccessible.

Similarly, making a dump on
tape of a 1-terabyte database will
take days, and obviously must be
done incrementally, without taking
the database off line. In the event
that a database is cor rupted because
of a head crash on a disk or for
some other reason, the tradit ional
algori thm is to restore the most re-
cent dump from tape and then to

roll the database forward to the
present time using the database log.
However, reading a 1-terabyte
d u m p will take days, leading to
unacceptably long recovery times.
Hence, a new approach to backup
and recovery in very large data-
bases must be found.

Parallelism
Ad-hoc queries over the large data-
bases contemplated by next-gener-
ation application designers will take
a long time to process. A scan of a
1-terabyte table may take days, and
it is clearly unreasonable for a user
to have to submit a query on Mon-
day morning and then go home
until Thursday when his answer
will appear .

First, imagine a 1-terabyte data-
base stored on a collection of disks,
with a large number o f CPUs avail-
able. The goal is to process a user's
query with nearly linear speedup.
That is, the query is processed in
time inversely propor t ional to the
number of processors and disks al-
located. To obtain l inear speedup,
the DBMS architecture must avoid
bottlenecks, and the storage system
must ensure that relevant data is
spread over all disk drives. More-
over, parallelizing a user command
will allow it to be executed faster,
but it will also use a larger fraction
of the available comput ing re-
sources, thereby penalizing the re-
sponse time of o ther concurrent
users, and possibly causing the sys-
tem to thrash, as many queries
compete for limited resources. Re-
search on mult iuser aspects of par-
allelism such as this one is in its in-
fancy.

On the other hand, if the table in
question is resident on an archive, a
d i f ferent form of parallelism may

be required. I f there are no indexes
to speed the search, a sequential
scan may be necessary, in which
case the DBMS should evaluate as
many queries as possible in parallel,
while pe r fo rming a single scan o f
the data.

In general , it remains a challenge
to develop a realistic theory for data
movement th roughout the memory
hierarchy of parallel computers.
The challenges posed by next-
generat ion database systems will
force computer scientists to con-
front these issues.

Tertian/Storage and Long-
Duration Transactions
For the foreseeable future, ultra
large databases will require both
secondary (disk) storage and the
integration o f an archive or tert iary
store into the DBMS. All cur rent
commercial DBMSs require data to
be ei ther disk or main-memory res-
ident. Future systems will have to
deal with the more complex issue of
optimizing queries when a port ion
of the data to be accessed is in an
archive. Current archive devices
have a very long latency period.
Hence, query optimizers must
choose strategies that avoid fre-
quent movement of data between
storage media. Moreover, the
DBMS must also optimize the
placement of data records on the
archive to minimize subsequent re*
trieval times. Finally, in such a sys-
tem, disk storage can be used as a
read or write cache for archive ob-
jects. New algori thms will be
needed to manage intelligently the
buffer ing in a three-level system.

The next-generat ion applica-
tions often aim to facilitate collabo-
rative and interactive access to a
database. The tradit ional transac-

COMMUNICATIONS OF THE ACM/October 1991/Vol.34, NO,10 117

tion model discussed earl ier as-
sumes that transactions are s h o r t - -
perhaps a fraction of a second.
However, a designer may lock a file
for a day, dur ing which it is rede-
signed. We need entirely new ap-
proaches to maintaining the integ-
rity of data, sharing data, and
recovering data, when transactions
can take hours or days.

Versions and conf igurat ions
Some next-generat ion applications
need versions of objects to represent
alternative or successive states of a
single conceptual entity. For in-
stance, in a facilities engineer ing
database, numerous revisions of the
electric plans will occur dur ing the
design, construction and mainte-
nance of the building, and it may be
necessary to keep all the revisions
for accounting or legal reasons.
Fur thermore , it is necessary to
maintain consistent configurations,
consisting of versions of related
objects, such as the electrical plan,
the heating plan, general and de-
tailed architectural drawings.

While there has been much dis-
cussion and many proposals for
p rope r version and configurat ion
models in di f ferent domains, little
has been implemented. Much re-
mains to be done in the creation of
space-efficient algori thms for ver-
sion management and techniques
for ensuring the consistency of con-
figurations.

Heterogeneous, Distributed
Databases
There is now effectively one world-
wide te lephone system and one
worldwide computer network. Vis-
ionaries in the field of computer
networks speak of a single world-
wide file system. Likewise, we
should now begin to contemplate
the existence of a single, worldwide
database system from which users
can obtain informat ion on any topic
covered by data made available by
purveyors, and on which business
can be transacted in a uni form way.
While such an accomplishment is a
generat ion away, we can and must

begin now to develop the underly-
ing technology in collaboration with
other nations.

Indeed, there are a number of
applications that are now becoming
feasible and that will help drive the
technology needed for worldwide
interconnection of information:

• Collaborative efforts are under-
way in many physical science dis-
ciplines, entail ing mult iproject
databases. The project has a data-
base composed of port ions as-
sembled by each researcher, and
a collaborative database results.
The human genome project is
one example of this phenome-
non.

• A typical defense contractor has a
collection of subcontractors as-
sisting with port ions of the con-
tractor project. The contractor
wants to have a single project
database that spans the port ions
of the project database adminis-
tered by the contractor and each
subcontractor,

• An automobile company wishes
to allow suppliers access to new
car designs unde r consideration.
In this way, suppliers can give
early feedback on the cost of
components . Such feedback will
allow the most cost-effective car
to be designed and manufac-
tured. However, this goal re-
quires a database that spans mul-
tiple organizations, that is, an
intercompany database.

These examples all concern the
necessity of logically integrat ing
databases f rom multiple organiza-
tions, often across company bound-
aries, into what appears to be a sin-
gle database. The databases
involved are heterogeneous, in the
sense that they do not normally
share a complete set of common
assumptions about the information
with which they deal, and they are
distr ibuted, meaning that individ-
ual databases are under local con-
trol and are connected by relatively
low-bandwidth links. The problem
of making heterogeneous, distrib-
u ted databases behave as if they

formed par t of a single database is
often called interoperabili ty. We
now use two very simple examples
to illustrate the problems that arise
in this environment :

First, consider a science p rogram
manager , who wishes to f ind the
total number o f compute r science
Ph.D. students in the U.S. The re
are over 100 institutions that grant
a Ph.D. degree in computer science.
We believe that all have an on-line
s tudent database that allows queries
to be asked of its contents. More-
over, the NSF p rogram manager
can, in theory, discover how to ac-
cess all of these databases and then
ask the correct local query at each
site.

Unfortunately, the sum of the
responses to these 100+ local que-
ries will not necessarily be the an-
swer to his overall query. Some in-
stitutions record only full-time
students; others record full- and
part- t ime students. Fur the rmore ,
some distinguish Ph.D. from Mas-
ters candidates, and some do not.
Some may erroneously omit certain
classes of students, such as foreign
students. Some may mistakenly in-
clude students, such as electrical
engineer ing candidates in an EECS
depar tment . The basic problem is
that these 100+ databases are se-
mantically inconsistent.

A second problem is equally il-
lustrative. Consider the possibility
of an electronic version of a travel
assistant, such as the Michelin
Guide. Most people traveling on
vacation consult two or more such
travel guides, which list prices and
quality ratings for restaurants and
hotels. Obviously, one might want
to ask the price o f a room at a spe-
cific hotel, and each guide is likely
to give a di f ferent answer. One
might quote last year 's price, while
another might indicate the price
with tax, and a third might quote
the price including meals. To an-
swer the user's query, it is necessary
to treat each value obtained as evi-
dence, and then to provide fusion of
this evidence to form a best answer
to the user 's query.

118 October 1991/Vo1.34, NO.10 /COMMUNICATIONS OF T H E A C M

; H I H P H) t))') I t III '

To proper ly suppor t heteroge-
neous, dis tr ibuted databases, there
is a difficult research agenda that
must be accomplished.

Browsing
Let us suppose that the problems of
access have been solved in any one
of the scenarios ment ioned earlier.
The user has a uniform query lan-
guage that can be appl ied to any
one of the individual databases or
to some merged view of the collec-
tion of databases. I f an inconsis-
tency is detected, or if missing in-
formation appears to invalidate a
query, we cannot simply give up.
There must be some system for
explaining to the user how the data
arr ived in that state and, in particu-
lar, f rom what databases it was de-
rived. With this information, it may
be possible to filter out the offend-
ing data elements and still arrive at
a meaningful query. Without it, it is
highly unlikely that any automatic
agent could do a trustworthy job.
Thus, we need to suppor t brows-
ing, the ability to interrogate the
structure of the database and, when
mult iple databases are combined,
interrogate the nature of the pro-
cess that merges data.

Incompleteness and Inconsistency
The Ph.D. s tudent and travel advi-
sor examples indicate the problems
with semantic inconsistency and
with data fusion. In the Ph.D. stu-
dent example there are 100+ dis-
parate databases, each containing
s tudent information. Since the indi-
vidual part icipant databases were
never designed with the objective of
in teropera t ing with other data-
bases, there is no single global
schema to which all individual data-
bases conform. Rather, there are
individual differences that must be
addressed. These include differ-
ences in units. For example, one
database might give starting salaries
for graduates in dollars per month
while another records annual sala-
ries. In this case, it is possible to
apply a conversion to obtain com-
posite consistent answers. More s e -

riously, the definit ion of a part- t ime
student may be different in the dif-
ferent databases. This difference
will result in composite answers that
are semantically inconsistent.
Worse still is the case in which the
local database omits information,
such as data on foreign students,
and is therefore simply wrong.

Future interoperabil i ty of data-
bases will require dramatic progress
to be made on these semantic is-
sues. We must extend substantially
the data model that is used by a
DBMS to include much more se-
mantic information about the
meaning of the data in each data-
base. Research on extended data
models is required to discover the
form that this information should
take.

Mediators
As the problems of fusion and se-
mantic inconsistency are so severe,
there is need for a class of informa-
tion sources that stand between the
user and the heterogeneous data-
bases. For example, if there were
sufficient demand, it would make
sense to create a "CS Ph.D. media-
tor" that could be quer ied as if it
were a consistent, unif ied database
containing the information that ac-
tually sits in the 100+ local data-
bases of the CS depar tments . A
travel adviser that provided the in-
formation obtained by fusing the
various databases of travel guides,
hotels, car-rental companies, and so
on, could be commercially viable.
Perhaps most valuable of all would
be a media tor that provided the in-
format ion available in the world's
libraries, or at least that por t ion of
the libraries that are stored elec-
tronically.

Mediators must be accessible by
people who have not had a chance
to study the details of their query
language and data model? Thus,
some agreement regard ing lan-
guage and model s tandards is es-
sential, and we need to do extensive
exper iments before standardizat ion
can be addressed. Self-description
of data is another impor tant re-

search problem that must be ad-
dressed if access to unfamil iar data
is to become a reality.

Name Services
The NSF p rogram manager must
be able to consult a national name
service to discover the location and
name of the databases or mediators
of interest. Similarly, a scientist
working in an interdisciplinary
problem domain must be able to
discover the existence of relevant
data sets collected in other disci-
plines. The mechanism by which
items enter and leave such name
servers and the organization of
such systems is an open issue.

SecurlW
Security is a major problem (failing)
in cur rent DBMSs. Heterogenei ty
and distr ibution make this open
problem even more difficult. A cor-
porat ion may want to make parts of
its database accessible to certain
parties, as did the automobile com-
pany ment ioned earlier, which of-
fered prel iminary design informa-
tion to potential suppliers.
However, the automobile company
certainly does not want the same
designs accessed by its competitors,
and it does not want any outsider
accessing its salary data.

Authent icat ion is the reliable
identification of subjects making.
database access. A heterogeneous,
distr ibuted database system will
need to cope with a world of multi-
ple authenticators of variable trust-
worthiness. Database systems must
be resistant to compromise by re-
mote systems masquerading as au-
thorized users. We foresee a need
for mandatory security and re-
search into the analysis of covert
channels, in o rde r that distr ibuted,
heterogeneous database systems do
not increase user uncertainty about
the security and integrity of one's
data.

A widely distr ibuted system may
have thousands or millions of users.
Moreover, a given user may be
identif ied different ly on different
systems. Fur ther , access permission

C O M M U N I C A T I O N S OF T H E ACM/October 1991/Vol.34, No.10 119

might be based on role (e.g., cur-
rent company Treasurer) or access
site. Finally, sites can act as interme-
diate agents for users, and data may
pass through and be manipulated
by these intervening sites. Whether
an access is permitted may well be
influenced by who is acting on a
user's behalf. Current authoriza-
tion systems will surely require sub-
stantial extensions to deal with
these problems.

site Scale-up
The security issue is just one ele-
ment of scale-up, which must be
addressed in a large distributed
DBMS. Current distributed DBMS
algorithms for query processing,
concurrency control, and support
of multipl~e copies were designed to
function ,with a few sites, and they
must all be rethought for 1,000 or
10,000 sites. For example, some
query-processing algorithms expect
to find the location of an object by
searching all sites for it. This ap-
proach is clearly impossible in a
large network. Other algorithms
expect all sites in the network to be
operational, and clearly in a 10,000
site network, several sites will be
down at any given time. Finally,
certain query-processing algorithms
expect to optimize a join by consid-
ering all possible sites and choosing
the one with the cheapest overall
cost. With a very large number of
sites, a query optimizer that loops
over all sites in this fashion is likely
to spend more time trying to opti-
mize the cluery than it would have
spent in simply executing the query
in a naive and expensive way.

Powerful desktop computers,
cheap and frequently underuti-
lized, mu.st be factored into the
query optimization space, as using
them will frequently be the most
responsive and least expensive way
to execute a query. Ensuring good
user response time becomes in-
creasingly difficult as the number
of sites and the distances between
them increase. Local caching, and
even local replication, of remote
data at the desktop will become in-

creasingly important. Efficient
cache maintenance is an open prob-
lem.

Transaction Management
Transaction management in a het-
erogeneous, distributed database
system is a difficult issue. The main
problem is that each of the local
database management systems may
be using a different type of a con-
currency control scheme. Integrat-
ing these is a challenging problem,
made worse if we wish to preserve
the local autonomy of each of the
local databases and allow local and
global transactions to execute in
parallel.

One simple solution is to restrict
global transactions to retrieve-only
access. However, the issue of relia-
ble transaction management in the
general case, where global and local
transactions are allowed to both
read and write data, is still open.

Conclusion
Database management systems are
now used in almost every comput-
ing environment to organize, create
and maintain important collections
of information. The technology
that makes these systems possible is
the direct result of a successful pro-
gram of database research. We have
highlighted some important
achievements of the database re-
search community over the past two
decades, focusing on the major ac-
complishments of relational data-
bases, transaction management,
and distributed databases.

We have argued that next-gener-
ation database applications will little
resemble current business data pro-
cessing databases. They will have
much larger data sets, require new
capabilities such as type extensions,
multimedia support, complex ob-
jects, rule processing, and archival
storage, and they will entail re-
thinking algorithms for almost all
DBMS operations. In addition, the
cooperation between different or-
ganizations on common problems
will require heterogeneous, distrib-
uted databases. Such databases

bring very difficult problems in the
areas of querying semantically in-
consistent databases, security, and
scale-up of distributed DBMS tech-
nology to large numbers of sites.
Thus, database systems research
offers

• A host of new intellectual chal-
lenges for computer scientists,
and

• Resulting technology that will
enable a broad spectrum of new
applications in business, science,
medicine, defense, and other
areas.

To date, the database industry has
shown remarkable success in trans-
forming scientific ideas into major
products, and it is crucial that ad-
vanced research be encouraged as
the database community tackles the
challenges ahead.

Acknowledgments
Any opinions, findings, conclu-
sions, or recommendations ex-
pressed in this report are those of
the panel and do not necessarily
reflect the views of the National Sci-
ence Foundation. Avi Silbershatz
and Jef f Ullman initiated the work-
shop and coordinated and edited
the report. Mike Stonebraker pro-
vided the initial draft and much of
the content for the final report.
Hewlett-Packard Laboratories
hosted the workshop. Postwork-
shop contributors to this report in-
clude Phil Bernstein, Won Kim,
Hank Korth, and Andre van Til-
borg. []

Permission to copy without fee all or part of
this material is granted provided that the
copies are not made or distributed for direct
commercial advantage, the ACM copyright
notice and the title of the publication and its
date appear, and notice is given that copying
is by permission of the Association for
Computing Machinery. To copy otherwise, or
to republish, requires a fee and/or specific
permission.

The workshop was supported by NSF Grant
IRI-89-19556.

© ACM 0002-0782/91/1000-110 $1.50

120 October 1991/Vol.34, No.10/COMMUNICATIONS OF THE ACM

