
Learning to Optimize Join Queries
With Deep Reinforcement Learning

Sanjay Krishnan1,2, Zongheng Yang1, Ken Goldberg1, Joseph M. Hellerstein1, Ion Stoica1

1RISELab, UC Berkeley 2Computer Science, University of Chicago
skr@cs.uchicago.edu {zongheng, goldberg, hellerstein, istoica}@berkeley.edu

ABSTRACT
Exhaustive enumeration of all possible join orders is often
avoided, and most optimizers leverage heuristics to prune
the search space. The design and implementation of heuris-
tics are well-understood when the cost model is roughly lin-
ear, and we find that these heuristics can be significantly
suboptimal when there are non-linearities in cost. Ideally,
instead of a fixed heuristic, we would want a strategy to
guide the search space in a more data-driven way— tailor-
ing the search to a specific dataset and query workload. Re-
cent work in deep reinforcement learning (Deep RL) may
provide a new perspective on this problem. Deep RL poses
sequential problems, like join optimization, as a series of 1-
step prediction problems that can be learned from data. We
present our deep RL-based DQ optimizer, which currently
optimizes select-project-join blocks, and we evaluate DQ on
the Join Order Benchmark. We found that DQ achieves plan
costs within a factor of 2 of the optimal solution on all cost
models and improves on the next best heuristic by up to 3×.
Furthermore, DQ executes 10,000× faster than exhaustive
enumeration and more than 10× faster than left/right-deep
enumeration on the largest queries in the benchmark.

1. INTRODUCTION
Query optimization has been studied in database research

and practice for almost 40 years [31]. The algorithmic prob-
lem of join optimization is a core component of almost all
query optimizers, and new algorithmic techniques for reduc-
ing planning latency and scaling to larger queries remains
an active area of research [29,36]. The classic problem is, of
course, NP-hard, and practical algorithms leverage heuris-
tics to make the search for a good plan efficient.

The design and implementation of heuristics are well-
understood when the cost model is roughly linear, i.e., the
cost of a join is linear in the size of its input relations. This
assumption underpins many classical techniques as well as
recent work [21,29,31,36]. However, many practical systems
have relevant non-linearities in join costs. For example,
an intermediate result exceeding the available memory may
trigger partitioning, or a relation may cross a size threshold
that leads to a change in physical join implementation.

It is not difficult to construct reasonable scenarios where
classical heuristics dramatically fail. Consider the query
workload and dataset in the Join Order Benchmark [23]. A
popular heuristic is pruning the search space to only include
left-deep join orders. Prior work showed that left-deep plans
are extremely effective on this benchmark for cost models
that prefer index joins [23]. Experimentally, we found this

Figure 1: We consider 3 cost models for the Join Order Bench-
mark: (1) one with inexpensive index lookups, (2) one where the
only physical operator is a hybrid hash join with limited mem-
ory, and (3) one that allows for the reuse of previously built hash
tables. The figure plots the suboptimality of left-deep planning
for each. The classical left-deep dynamic program fails on the
latter two scenarios. We propose a reinforcement learning based
optimizer, DQ, which can adapt to a specific cost model given
appropriate training data.

to be true as well: the worst-case cost over the entire work-
load is only 2× higher than the true optimum (for an expo-
nentially smaller search space). However, when we simply
change the cost model to be more non-linear, consisting of
(1) hybrid hash join operators that partition data when it
exceeds limited available memory, or (2) hash join operators
that can re-use previously built hash tables, suddenly the
left-deep is no longer as effective—almost 50× more costly
than the true optimum (Figure 1).

These results illustrate that practically, the search prob-
lem is unforgiving: different heuristics have weak spots
where they fail by orders of magnitude relative to optimal.
Success on such atypical or non-linear cost models may re-
quire searching over “bushy” plans, not just left-deep ones.
With new hardware innovations [4] and a move towards
serverless RDBMS architectures [1], it is not unreasonable
to expect a multitude of new query cost models that signif-
icantly differ from existing literature; which might require a
complete redesign of standard pruning heuristics. Ideally, in-
stead of a fixed heuristic, we would want a strategy to guide
the search space in a more data-driven way—tailoring the
search to a specific dataset, query workload, and observed
join costs. This sets up the main premise of the paper: would
it be possible to use data-driven machine learning methods
to identify such a heuristic from data?

The main insight of this paper is that join optimization is
a sequential learning problem and there is an elegant way to
integrate classical join optimization algorithms with statis-

ar
X

iv
:1

80
8.

03
19

6v
1

 [
cs

.D
B

]
 9

 A
ug

 2
01

8

tical machine learning techniques. To understand how, let
us consider the hypothetical problem of exhaustive enumer-
ation including “bushy” join trees and Cartesian products.
The principle of optimality leads to a dynamic program-
ming algorithm that incrementally builds a plan from opti-
mal subplans. The algorithm re-uses previously enumerated
subplans through exact memoization in a lookup table, and
uses this table to construct a sequence of 1-step optimal
decisions. In the abstract, the algorithm has a data struc-
ture that summarizes previous enumerations and makes a
future decision using this data structure. We can cast this
as a generalized prediction problem: given the costs of pre-
viously enumerated subplans, which 1-step decision is most
likely optimal? The implications of this formulation is that
to reach optimality, we may not have to exhaustively enu-
merate the plan space if costs of certain subplans can be
extrapolated.

Algorithmically, this is the problem statement of the Ar-
tificial Intelligence field of reinforcement learning (RL) [34].
RL algorithms use sampling and statistical machine learn-
ing to estimate the long-term benefit of decisions. Con-
cretely, this corresponds to setting up a regression problem
between the decision to join a particular pair of relations
and the observed benefit of making that decision in past
data. Since this regression problem can be very non-linear
in query optimization, we need a sufficiently rich class of
functions, like neural networks, to parameterize the regres-
sion model. With this formulation, we can apply standard
RL algorithms, similar to those used to play Atari games [28]
or the game of Go [32], to join optimization. This formula-
tion is particularly compelling if a single model can capture
predictions for an entire workload, thus sharing learned ex-
periences across planning instances.

We believe that (deep) reinforcement learning provides a
new algorithmic perspective for thinking about join enumer-
ation, and particularly a data-driven way of thinking about
enumeration heuristics. Rather than the standard tunable
parameters of a query optimizer, we now have to control
what training data the model sees and how that data is fea-
turized. The algorithm makes few assumptions about the
structure of the cost model or the topology of the search
space. Our deep RL-based optimizer, DQ, is built on Apache
Calcite [2]. We show DQ optimizes plans well across many
different cost models for a relatively modest set of training
queries. Figure 1 illustrates that DQ significantly reduces
the worst-case performance of a workload by adapting to
the structure of the problem.

Our evaluation uses the recently proposed Join Order
Benchmark (JOB) [23]. Its 33 templates and 113 queries
in total contain between 4 and 15 relations, with an av-
erage of 8 relations per query. To summarize the results,
we constructed three different cost models and evaluated 6
heuristic baselines. We found that DQ achieves plan costs
within a factor of 2 of the optimal solution on all cost mod-
els. On the two cost models with significant non-linearities
DQ improves on the next best heuristic by 1.7× and 3×. DQ
executes 10,000× faster than exhaustive enumeration, over
1,000× faster than zig-zag tree enumeration, and more than
10× faster than left/right deep enumeration on the largest
queries in the benchmark. We also evaluate executing the
optimized plans on a real PostgreSQL database for a selected
set of queries.

In summary, this paper makes the following contributions:

• We formulate join optimization as a Markov Decision
Process, and we propose a deep reinforcement learning
solution.

• We build a deep RL-based optimizer, DQ, with a flexi-
ble architecture allowing for tunable featurization and
data collection schemes.

• We conduct evaluation against a range of classical
heuristic optimizers and find DQ competitive in terms
of plan quality and latency.

2. BACKGROUND
Traditional dynamic programs re-use previously com-

puted results through memoization. In contrast, Reinforce-
ment Learning (RL) represents the information from pre-
viously computed results with a learned model. We apply
an RL model with a particular structure, a regression prob-
lem that associates the downstream value (future cumula-
tive cost) with a decision (a join of two relations for a given
query). Training this model requires observing join orders
and their costs sampled from a workload. By projecting
the effects of a decision into the future, the model allows us
to dramatically prune the search space without exhaustive
enumeration.

2.1 Problem Setting
We make the classical assumption of searching for a query

plan made up of binary join operators and unary selections,
projections, and access methods. We present our method for
conjunctions of binary predicates and foreign key equi-joins.

We will use the following database of three relations de-
noting employee salaries as a running example throughout
the paper:

Emp(id, name, rank) Pos(rank, title, code) Sal(code, amount)

Consider the following join query:

SELECT ∗
FROM Emp, Pos , Sa l
WHERE Emp. rank = Pos . rank AND
Pos . code = Sal . code

There are many possible orderings to execute this query. For
example, one could execute the example query as Emp ./
(Sal ./ Pos), or as Sal ./ (Emp ./ Pos).

2.2 Introduction to Reinforcement Learning
Bellman’s “Principle of Optimality” and the characteri-

zation of dynamic programming is one of the most impor-
tant results in computing [8]. It has a deep connection to
a class of stochastic processes called Markov Decision Pro-
cesses (MDPs), which formalize a wide range of problems
from path planning to scheduling. In an MDP model, an
agent makes a sequence of decisions with the goal of opti-
mizing a given objective (e.g., improve performance, accu-
racy). Each decision is dependent on the current state, and
typically leads to a new state. The process is “Markovian”
in the sense that the system’s current state completely de-
termines its future progression. Formally, an MDP consists
of a five-tuple:

〈S,A, P (s, a), R(s, a), s0〉

where S describes a set of states that the system can be in, A
describes the set of actions the agent can take, s′ ∼ P (s, a)

describes a probability distribution over new states given
a current state and action, and s0 defines a distribution of
initial states. R(s, a) is the reward of taking action a in state
s. The reward measures the performance of the agent. The
objective of an MDP is to find a decision policy π : S 7→ A,
a function that maps states to actions, with the maximum
expected reward:

arg max
π

E

[
T−1∑
t=0

R(st, at)

]
subject to st+1 = P (st, at), at = π(st).

As with dynamic programming in combinatorial problems,
most MDPs are difficult to solve exactly. Note that the
greedy solution, eagerly maximizing the reward at each step,
might be suboptimal in the long run. Generally, analytical
solutions to such problems scale poorly in the time horizon.

Reinforcement learning (RL) is a class of stochastic op-
timization techniques for MDPs [34]. An RL algorithm
uses sampling, taking randomized sequences of decisions, to
build a model that correlates decisions with improvements
in the optimization objective (cumulative reward). The ex-
tent to which the model is allowed to extrapolate depends on
how the model is parameterized. One can parameterize the
model with a table (i.e., exact parameterization) or one can
use any function approximator (e.g., linear functions, near-
est neighbors, or neural networks). Using a neural network
in conjunction with RL, or Deep RL, is the key technique
behind recent results like learning how to autonomously play
Atari games [28] and the game of Go [32].

2.3 Markov Model of Enumeration
To pose the construction of a query plan tree as an MDP

problem, it will be useful in subsequent discussion to view
join nesting as a sequence of graph contractions. We briefly
introduce the formalism here.

Definition 1 (Query Graph). Let G define an undi-
rected graph called the query graph, where each relation R is
a vertex and each join predicate ρ defines an edge between
vertices. The number of connected components of G are de-
noted by κG.

Each possible join is equivalent to a combinatorial opera-
tion called a graph contraction.

Definition 2 (Contraction). Let G = (V,E) be a
query graph with V defining the set of relations and E defin-
ing the edges from the join predicates. A contraction c is
a function of the graph parameterized by a pair of vertices
c = (vi, vj). Applying c to the graph G defines a new graph
with the following properties: (1) vi and vj are removed from
V , (2) a new vertex (vi+vj) is added to V , and (3) the edges
of (vi + vj) are the union of the edges incident to vi and vj.

Each contraction reduces the number of vertices by 1.
Each plan can be described as a sequence of such contrac-
tions c1◦c2...◦cT until |V | = κG. Going back to our running
example, suppose we start with a query graph consisting of
the vertices (Emp, Pos, Sal). Let the first contraction be
c1 = (Emp, Pos); this leads to a query graph where the
new vertices are (Emp + Pos, Sal). Applying the only re-
maining possible contraction, we arrive at a single remaining

Symbol Definition

G A query graph. This is a state in the MDP.

c A join (contraction on the graph). This is an action in the MDP.

G′ The resultant query graph after applying a join.

J(c) A cost model that scores joins.

Table 1: Notation used throughout the paper.

vertex Sal + (Emp + Pos) corresponding to the join plan
Sal ./ (Emp ./ Pos).

Hereafter, we will use the term join as synonymous with
contraction. The join optimization problem is to find the
best possible join sequence—i.e., the best query plan. Also
note that this model can be simply extended to capture
physical operator selection as well. The set of allowed
joins can be typed with an eligible join type, e.g., c =
(vi, vj ,HashJoin) or c = (vi, vj , IndexJoin).

We assume access to a cost model J , a function that
estimates the incremental cost of a particular join, i.e.,
J(c) 7→ R+.

Problem 1 (Join Optimization Problem). Let G
define a query graph and J define a cost model. Find a
sequence c1 ◦ c2... ◦ cT terminating in |V | = κG to minimize:

min
c1,...,cT

T∑
i=1

J(ci)

subject to Gi+1 = c(Gi).

Note how this problem statement exactly defines an MDP
(albeit by convention a minimization problem rather than
maximization). G is a representation of the state, c is a
representation of the action, the graph contraction process
defines P (G, c), and the reward function is the negative cost
−J . The output of an MDP is a function that maps a given
query graph to the best next join.

Before proceeding, we summarize notation that will be
used throughout the remainder of our paper in Table 1.

2.4 Long Term Reward of a Join
To introduce how RL gives us a new perspective on this

classical database optimization problem, let us first examine
the greedy solution. A naive solution is to optimize each ci
independently (also called Greedy Operator Optimization
in recent literature [29]). The algorithm proceeds as follows:
(1) start with the query graph, (2) find the lowest cost join,
(3) update the query graph and repeat until only one vertex
is left.

The greedy algorithm, of course, does not consider how
local decisions might affect future costs. For illustration,
consider our running example query with the following sim-
ple costs (assume a single join method with symmetric cost):

J(EP) = 100, J(SP) = 90, J((EP)S) = 10, J((SP)E) = 50

The greedy solution would result in a cost of 140 (because it
neglects the future effects of a decision), while the optimal
solution has a cost of 110. However, there is an upside:
this greedy algorithm has a computational complexity of
O(|V |3), despite the super-exponential search space.

The greedy solution is suboptimal because the decision
at each index fails to consider the long-term value of its
action. One might have to sacrifice a short term benefit for

a long term payoff. Consider the optimization problem for
a particular query graph G:

V (G) = min
c1,...,cT

T∑
i=1

J(ci) (1)

In classical treatments of dynamic programming, this func-
tion is termed the value function. It is noted that optimal
behavior over an entire decision horizon implies optimal be-
havior from any starting index t > 1 as well, which is the
basis for the idea of dynamic programming. So, V (G) can
then be defined recursively for any subsequent graph G′ gen-
erated by future joins:

V (G) = min
c
{ J(c) + ·V (G′) } (2)

We can rewrite this value recursion in the following form:

Q(G, c) = J(c) + ·V (G′)

leading to the following recursive definition of the Q-function
(or cost-to-go function):

Q(G, c) = J(c) + min
c′

Q(G′, c′) (3)

Intuitively, the Q-function describes the long-term value of
each join: the cumulative cost if we act optimally for all
subsequent joins after the current join decision. Knowing Q
is equivalent to solving the problem since local optimization
minc′ Q(G′, c′) is sufficient to derive an optimal sequence of
join decisions.

If we revisit the greedy algorithm, and revise it hypothet-
ically as follows: (1) start with the query graph, (2) find the
lowest Q-value join, (3) update the query graph and repeat,
then this algorithm has the same computational complex-
ity of O(|V |3) but is provably optimal. To sketch out our
solution, we will use Deep RL to approximate a global Q-
function (one that holds for all query graphs in a workload),
which gives us a polynomial-time algorithm for join opti-
mization.

2.5 Applying Reinforcement Learning
An important class of reinforcement learning algorithms,

called Q-learning algorithms, allows us to approximate the
Q-function from samples of data [34]. What if we could
regress from features of (G, c) to the future cumulative
cost based on a small number of observations? Practically,
we can observe samples of decision sequences containing
(G, c, J(c), G′) tuples, where G is the query graph, c is a
particular join, J(c) is the cost of the join, and G′ is the
resultant graph. Such a sequence can be extracted from any
final join plan and evaluating the cost model on the sub-
plans.

Let’s further assume we have a parameterized model for
the Q-function, Qθ:

Qθ(fG, fc) ≈ Q(G, c)

where fG is a feature vector representing the query graph
and fc is a feature vector representing a particular join. θ
is the model parameters that represent this function and is
randomly initialized at the start. For each training tuple
i, one can calculate the following label, or the “estimated”
Q-value:

yi = J(c) + arg max
c′

Qθ(G
′, c′)

The {yi} can then be used as labels in a regression problem.
If Q were the true Q-function, then the following recurrence
would hold:

Q(G, c) = J(c) + arg max
c′

Qθ(G
′, c′)

So, the learning process, or Q-learning, defines a loss mea-
suring how close the previous equation is to a fixed-point at
each iteration:

L(Q) =
∑
i

‖yi −Qθ(G, c)‖22

Then parameters of the Q-function can be optimized with
gradient descent until a fixed-point is reached by recalculat-
ing the labels at the next iteration after each gradient step.
When the model being optimized is a deep neural network,
this algorithm is called the Deep Q Network algorithm [28].

Q-learning yields two key benefits: (1) the search cost for a
single query relative to traditional query optimization is rad-
ically reduced, since the algorithm has the time-complexity
of greedy search, and (2) the parameterized model can po-
tentially learn across queries that have “similar” but non-
identical subplans. This is because the similarity between
subplans are determined by the query graph and join featur-
izations, fG and fc; thus if they are designed in a sufficiently
expressive way, then the neural network can be trained to
extrapolate the Q-function estimates to an entire workload
of queries.

3. LEARNING TO OPTIMIZE
To apply Q-learning to the join optimization MDP, we

need two pieces: a featurized representation for the argu-
ments (G and c) and a way of collecting training data. The
model takes in a subplan G and predicts which next join is
likely to be optimal.

3.1 Featurizing the Join Decision
Before we get into the details, we will give a brief motiva-

tion of how we should think about featurization in a prob-
lem like this. The features should be sufficiently rich that
they capture all relevant information to predict the future
cumulative cost of a join decision. This requires knowing
what the overall query is requesting, the tables on the left
side of the proposed join, and the tables on the right side of
the proposed join. It also requires knowing how single table
predicates affect cardinalities on either side of the join.

Participating Relations: The first step is to con-
struct a set of features to represent which relations are
participating in the query and in the particular join.
Let A be the set of all attributes in the database (e.g.,
{Emp.id, Pos.rank, ..., Sal.code, Sal.amount}). Each rela-
tion rel (including intermediate join results) has a set of
visible attributes, Arel ⊆ A, the attributes present in the
output. So every query graph G can be represented by its
visible attributes AG ⊆ A. Each join is a tuple of two re-
lations (L,R) and we can get their visible attributes AL
and AR. Each of the attribute sets AG, AL, AR can then
be represented with a binary 1-hot encoding : a value 1 in a
slot indicates that particular attribute is present, otherwise
0 represents its absence. Using ⊕ to denote concatenation,
we obtain the query graph features, fG = AG, and the join
decision features, fc = AL ⊕ AR, and, finally, the overall
featurization for a particular (G, c) tuple is simply fG ⊕ fc.

SELECT ∗
FROM Emp, Pos , Sa l
WHERE Emp. rank =

Pos . rank
AND Pos . code = Sal . code

(a) Example query

AG = [E.id, E.name, E.rank,

P.rank, P.title, P.code,

S.code, S.amount]

= [1 1 1 1 1 1 1 1]

(b) Query graph featurization

AL = [E.id, E.name, E.rank]

= [1 1 1 0 0 0 0 0]

AR = [P.rank, P.title, P.code]

= [0 0 0 1 1 1 0 0]

(c) Features of E ./ P

AL = [E.id, E.name, E.rank,

P.rank, P.title, P.code]

= [1 1 1 1 1 1 0 0]

AR = [S.code, S.amount]

= [0 0 0 0 0 0 1 1]

(d) Features of (E ./ P) ./ S

Figure 2: A query and its corresponding featurizations (§3.1). One-hot vectors encode the visible attributes in the query graph
(AG), the left side of a join (AL), and the right side (AR). Such encoding allows for featurizing both the query graph and a particular
join. A partial join and a full join are shown. The example query covers all relations in the schema, so AG = A.

Query:
<example query>

AND Emp. id > 200

Selectivity(Emp.id>200) = 0.2

fG = AG = [E.id, E.name, · · ·]
= [1 1 1 1 1 1 1 1]

→ [.2 1 1 1 1 1 1 1]

(a) Selectivity scaling in
query graph features

Query:
<example query>

feat vec(IndexJoin(E ./ P))

= AL ⊕AR ⊕ [1 0]

feat vec(HashJoin(E ./ P))

= AL ⊕AR ⊕ [0 1]

(b) Concatenation of physical
operators in join features

Figure 3: Accounting for selections and physical opera-
tors. Simple changes to the basic form of featurization are needed
to support selections (left) and physical operators (right). For
example, assuming a system that chooses between only IndexJoin
and HashJoin, a 2-dimensional one-hot vector is concatenated to
each join feature vector. Discussion in §3.1.

Figure 2 illustrates the featurization of our example query.
The overall intuition behind this scheme is to use each col-
umn name as a feature, because it identifies the distribution
of that column.

Selections: Selections can change said distribution, i.e.,
(col, sel-pred) is different than (col, TRUE). To handle single
table predicates in the query, we have to tweak the feature
representation. As with most classical optimizers, we as-
sume that the optimizer eagerly applies selections and pro-
jections to each relation. Next, we leverage the table statis-
tics present in most RDBMS. For each selection σ in a query
we can obtain the selectivity δσ, which estimates the fraction
of tuples present after applying the selection1. To account
for selections in featurization, we simply scale the slot in fG
that the relation and attribute σ corresponds to, by δr. For
instance, if selection Emp.id > 200 is estimated to have a se-
lectivity of 0.2, then the Emp.id slot in fG would be changed
to 0.2. Figure 3a pictorially illustrates this scaling.

Physical Operator: The next piece is to featurize the
choice of physical operator. This is straightforward: we add
another one-hot vector that indicates from a fixed set of
implementations the type of join used. Figure 3b shows an
example.

Extensibility: In this paper, we focus only on the basic
form of featurization described above and study foreign key
equality joins. An ablation study as part of our evaluation
(Table 9) shows that the pieces we settled on all contribute

1We consider selectivity estimation out of scope for this pa-
per. See discussion in §4 and §6.

to good performance. That said, there is no architectural
limitation in DQ that prevents it from utilizing other fea-
tures. Any property believed to be relevant to join cost
prediction can be added to our featurization scheme. For
example, we can add an additional binary vector find to in-
dicate which attributes have indexes built. Likewise, physi-
cal properties like sort-orders can be handled by indicating
which attributes are sorted in an operator’s output. Hard-
ware environment variables (e.g., available memory) can be
added as scalars if deemed as important factors in determin-
ing the final best plan. Lastly, more complex join conditions
such as inequality conditions can also be handled (§7).

3.2 Generating the Training Data
DQ uses a multi-layer perceptron (MLP) neural network

to represent the Q-function. It takes as input the final fea-
turization for a (G, c) pair, fG ⊕ fc. Empirically, we found
that a two-layer MLP gave the best performance under a
modest training time constraint. We implemented a stan-
dard DQN algorithm (§2.5) in DL4J, a popular deep learning
framework in Java.

Now, we describe what kind of training data is neces-
sary to learn a Q-function. In supervised regression, we col-
lect data of the form (feature, values). The learned
function maps from feature to values. One can think of
this as a stateless prediction, where the underlying predic-
tion problem does not depend on some underlying process
state. On the other hand, in the Q-learning setting, there
is state. So we have to collect training data of the form
(state, decision, new state, cost). Therefore, a
training dataset consists of tuples of the following format:

L i s t<Graph , Join , Graph ’ , Cost> datase t ;

or (G, c, G’, J) for short.
This defines a stochastic gradient descent iteration until

convergence:

θ(i+1) ← θ(i)−α·[(J+min
c′

Qθ(G
′, c′))−Qθ(G, c)]·∇θQθ(G, c)

In many cases like robotics or game-playing, RL is used in
a live setting where the model is trained on-the-fly based on
concrete moves chosen by the policy and measured in prac-
tice. Q-learning is known as an “off-policy” RL method.
This means that it can be trained on experimental data
from other problem instances, as long as the training data
sufficiently covers the decisions to be made. Its training
is independent of the data collection process and can be
suboptimal—as long as the data collection process suffi-
ciently covers relevant scenarios.

Such off-policy data can be acquired via a system’s native
optimizer and cost model. In fact, useful data is automat-
ically generated as a consequence of running classical plan-
ning algorithms. For each join decision that the optimizer
makes, we can get the incremental cost of the join. Further-
more, if we run a classical dynamic programming algorithm
to optimize a k-way join, we not only get a final plan but
also data from all of the samples along the final join path
but every single subplan enumerated along the way. Any
heuristic optimizer search can be used to generate this infor-
mation: bushy trees, zig-zag trees, left-deep, or right-deep.
Randomized algorithms such as QuickPick [38] can also be
used.

In our experiments, we bootstrap planning with a bushy
dynamic program until the number of relations in the join
exceeds 10 relations. Then, the data generation algorithm
switches to a greedy scheme for efficiency for the last K−10
joins. Ironically, the data collected from such an optimizer
might be “too good” because it does not measure or learn
from a diverse enough space of subplans. If the training
data only consisted of optimal sub-plans, then the learned
Q-function may not accurately learn the downside of poor
subplans. Likewise, if the training purely sampled random
plans, it might not see very many instances of good plans.

To encourage more “exploration”, during data collection
noise can be injected into the optimizer to force it to enumer-
ate more diverse subplans. We control this via a parameter
ε, the probability of picking a random join as opposed to
a join with the lowest cost. As the algorithm enumerates
subplans, if rand() < ε then a random (valid) join is chosen
on the current query graph; otherwise it proceeds with the
lowest-cost join as usual. This is an established technique to
address such “covariate shift”, a phenomenon that has been
extensively studied in prior work [22].

3.3 Execution after Training
After training, we obtain a parameterized estimate of the

Q-function, Qθ(fG, fc). For execution, we simply go back to
the standard algorithm as in the greedy method but instead
of using the local costs, we use the learned Q-function: (1)
start with the query graph, (2) featurize each join, (3) find
the join with the lowest estimated Q-value (i.e., output
from the neural net), (4) update the query graph and repeat.

This algorithm has the time-complexity of greedy enumer-
ation except in greedy, the cost model is evaluated at each
iteration, and in our method, a neural network is evaluated.
One pleasant consequence is that DQ exploits the abundant
vectorization opportunities in numerical computation. In
each iteration, instead of invoking the neural net sequen-
tially on each join’s feature vector, DQ batches all candidate
joins (of this iteration) together, and invoke the neural net
once on the batch. Modern CPUs, GPUs, and specialized
accelerators (e.g., Tensor Processing Unit [19]) all offer opti-
mized instructions for such single-instruction multiple-data
(SIMD) workloads. The batching optimization amortizes
each invocation’s fixed overheads and has the most impact
on large joins.

3.4 Feedback From Execution
A learned Q-function also allows us to leverage feedback

from real query executions. Readers might be familiar
with the concept of fine-tuning in the neural network lit-
erature [41], where a network is trained on one dataset and

transferred to another with minimal retraining. We can ap-
ply a very similar principle to accounting for feedback.

The challenge is that when we execute a plan, we do not
observe all of the intermediate costs without significant in-
strumentation of the database. We may only observe a final
runtime. Executing subplans can be very expensive (queries
can take several minutes to run). However, we can still lever-
age a final runtime to adjust plans that optimize runtime,
while still leveraging what we have learned from the cost-
model. One can think about the fine-tuning process as first
using the cost model to learn relevant features about the
structure of subplans (i.e., which ones are generally bene-
ficial). After this is learned, those features are fed into a
predictor to project the effect of that decision on final run-
time.

The Q-function relates subplans to future projected costs.
As with any cost model, the cumulative cost is a proxy for
runtime. We can define a new cost function where the im-
mediate cost of all joins are 0 but the cost of the final plan
is its runtime. We can generate a fine-tuning dataset {xi}N1
with:

xi =

{
(G, c, G’, 0) if not final

(G, c, G’, runtime) if final

The training procedure first pre-trains the network on a
large amount of samples from the optimizer’s cost model
(inexpensive compared to execution). Once it’s trained to
convergence, we freeze the weights of the first two layers.
When data is collected from real execution, we re-initialize
the last (output) layer and restart training on these data
samples.

4. OPTIMIZER ARCHITECTURE
Selinger’s optimizer design separated the problem of plan

search from cost/selectivity estimation [31]. This insight al-
lowed independent innovation on each topic over the years.
In our initial work on using Deep Learning for query op-
timization, we follow this lead, and intentionally focused
on learning a search strategy only. For cost estimation,
we lean on traditional selectivity and cost estimation tech-
niques. This allows us to study the effectiveness of Deep RL
on optimizer search specifically, without confounding factors
from cost estimation.

Even within the search problem, we focus narrowly on
the classical select-project-join kernel. This is traditional
in the literature, going back to Selinger [31] and continu-
ing as recently as Neumann et al.’s very recent experimen-
tal work [29]. It is also particularly natural for illustrating
the connection between dynamic programming and Deep RL
and implications for query optimization. We intend for our
approach to plug directly into a Selinger-based optimizer
architecture like that of PostgreSQL, DB2 and many other
systems. Our approach, DQ, is simply a learning-based re-
placement for prior algorithms for searching a plan space.
Like any non-exhaustive query optimization technique, our
results are heuristic. The new concerns raised by our ap-
proach have to do with limitations of training, including
overfitting and avoiding high-variance plans. We use this
section to describe the extensibility of our approach and
what design choices the user has at her disposal.

4.1 Architecture and API

First, we describe the information that DQ requires to
train, learn, and execute. The algorithm has a training
phase in which it observes join costs and an execution phase
where it evaluates the learned model. DQ makes relatively
minimal assumptions about the structure of the optimizer.
Below are the API hooks that we require implemented:

Workload Generation. A function that returns a list of train-
ing queries of interest. DQ requires a relevant workload for
training. In our experiments, we show that this workload
can be taken from query templates or sampled from the
database schema.

sample () : L i s t<Queries>

Cost Sampling. A function that given a query returns a
list of join actions and their resultant costs. DQ requires
the system to have its own optimizer to generate training
data. This means generating feasible join plans and their
associated costs. Our experiments evaluate integration with
both deterministic enumeration algorithms (bushy and left-
deep) and a randomized algorithm called QuickPick-1000.

t r a i n (query) : L i s t<Graph , Join , Graph ’ , Cost>

Predicate Selectivity Estimation. A function that returns
the selectivity of a particular single table predicate. DQ
leverages the optimizer’s own selectivity estimate for featur-
ization (§3.1).

s e l e c t i v i t y (p r e d i c a t e) : Double

In our evaluation (§5.6), we will vary these exposed hooks
to experiment with different implementations for each (e.g.,
comparing training on highly relevant data from a desired
workload vs. randomly sampling join queries directly from
the schema).

4.2 Implementation
Our prototype implementation is integrated with Apache

Calcite [2]. Apache Calcite provides libraries for parsing
SQL, representing relational algebraic expressions, and a
Volcano-based query optimizer [15,16]. Calcite does not
handle physical execution or storage and uses JDBC con-
nectors to a variety of database engines and file formats.
We implemented a package inside Calcite that allowed us to
leverage its parsing and plan representation, but also aug-
ment it with more sophisticated cost models and optimiza-
tion algorithms. We implemented an internal simulator to
simulate cost estimates based on histograms, true cardinal-
ities, and other approximations. All of our code is written
in single-threaded Java.

5. EXPERIMENTS
To set up the experiments, we revisit a motivating claim

from the introduction: the design and implementation of
heuristics is well-understood when the cost model is lin-
ear and non-linearities can lead to significant suboptimal-
ity. The experiments intend to illustrate that DQ offers a
form of robustness to cost model, meaning, that it prioritizes
plans tailored to the structure of the cost model, workload,
and physical design—even when these plans are bushy. We
also report how DQ is affected by various extensible knobs
it exposes, namely varying the relevance of the training data
and how the data is collected.

Our evaluation uses the recently proposed “Join Order
Benchmark” (JOB) [23]. This benchmark is derived from
the Internet Movie Data Base (IMDB). It contains informa-
tion about movies and related facts about actors, directors,
production companies, etc. The dataset is 3.6 GB in size
and consists of 21 relational tables. The largest table has 36
million rows. The benchmark contains 33 templates and 113
queries in total. The joins have between 4 and 15 relations,
with an average of 8 relations per query. In our evaluation,
we do not explicitly study the problems of selectivity/cost
estimation or avoiding high-variance plans. To summarize
the results, we found that:

• DQ achieves plan costs within a factor of 2 of exhaus-
tive enumeration on all cost models (§5.3.1, §5.3.2,
§5.3.3).
• On the two cost models with significant non-linearities

DQ improves on the next best heuristic (zig-zag) by a
factor of up to 3 (§5.3.2, §5.3.3).
• When planning the largest queries in JOB, DQ ex-

ecutes 10,000× faster than exhaustive enumeration,
over 1,000× faster than zig-zag tree enumeration, and
more than 10× faster than left/right-deep enumeration
(§5.4). It outperforms all baselines on queries with 11
or more relations.

5.1 Robustness to Cost Model
In the first set of experiments, we show how the same

query workload with different cost models can lead to very
different performance in heuristics. The cost model de-
scribed in Leis et al. [23] is inspired by an in-memory system.
The cost of a hash join is linear in the size of the input rela-
tions, and the cost of an index join is essentially the cost of
streaming the left side of the join. This cost model greatly
rewards index-usage (by convention the right relation is used
for index lookup), and left-deep strategies are very strong in
this setting. One of the experimental conclusions is that
there is little benefit of bushy plans. This leads us to a
natural question—where are bushy plans useful?

Many systems have piecewise cost models with regimes de-
termined by the size of a relation (see work on Parametric
Query Optimization [17,35]). When the relation exceeds a
size threshold, either because of additional partitioning due
to memory constraints or because of a switch to a differ-
ent physical operator, non-linear costs can be incurred. We
argue that in these non-linear regimes classical heuristics ex-
perience significant difficulty. We found that size thresholds
lead to a phenomenon that we call packing, where the opti-
mal plans tend to be bushy to strategically create interme-
diate results with sizes under the thresholds. We illustrate
these behaviors with three different cost models motivated
by different underlying DBMS architectures.

CM1: In the first cost model (inspired by [23]), we model
a main-memory database that performs two types of joins:
index joins and in-memory hash joins. Let O describe the
current operator, Ol be the left child operator, and Or be
the right child operator. The costs are defined with the
following recursions:

cij(O) = c(Ol) + match(Ol, Or) · |Ol|

chj(O) = c(Ol) + c(Or) + |O|
where c denotes the cost estimation function, | · | is the car-
dinality function, and match denotes the expected cost of

an index match, i.e., fraction of records that match the in-
dex lookup (always greater than 1) multiplied by a constant
factor λ (we chose 1.0). We assume indexes on the primary
keys. In this cost model, if an eligible index exists it is gen-
erally desirable to use it, since match(Ol, Or) · |Ol| rarely
exceeds c(Or) + |O| for foreign key joins. Even though the
cost model is nominally “non-linear”, primary tradeoff be-
tween the index join and hash join is due to index eligibility
and not dependent on properties of the intermediate results.
For the JOB workload, unless λ is set to be very high, hash
joins have rare occurrences compared to index joins.

CM2: In the next cost model, we remove index eligibility
from consideration and consider only hash joins and nested
loop joins with a memory limit M . The model charges a cost
when data requires additional partitioning, and further falls
back to a nested loop join when the smallest table exceeds
the squared memory:

cjoin =


c(Ol) + c(Or) + |O| if |Or|+ |Ol| ≤M

c(Ol) + c(Or) + 2(|Or|+ |Ol|) + |O| if min(|Or|, |Ol|) ≤M2

c(Ol) + c(Or) + (|Or|+
⌈

|Or|
M

⌉
|Ol|)

The non-linearities in this model are size-dependent, so con-
trolling the size of intermediate relations is important in the
optimization problem. We set the memory limit M to 105

tuples in our experiments. This limit is low in real-world
terms due to the small size of the benchmark data. However,
we intend for the results to be illustrative of what happens
in the optimization problems.

CM3: In the next cost model, we model a database that
accounts for the reuse of already-built hash tables. We use
the Gamma database convention where the left operator as
the “build” operator and the right operator as the “probe”
operator [14]. If the previous join has already built a hash
table on an attribute of interest, then the hash join does not
incur another cost.

cnobuild = c(Ol) + c(Or)− |Or|+ |O|

We also allow for index joins as in CM1. This model makes
hash joins substantially cheaper in cases where re-use is pos-
sible. This model favors some subplans to be right-deep
plans which maximize the reuse of the built hash tables.
Therefore, optimal solutions have both left-deep and right-
deep segments.

In our implementation of these cost models, we use true
cardinalities on single table predicates, and we leverage stan-
dard independence assumptions to construct more compli-
cated cardinality estimates. The goal of this work is to eval-
uate the join ordering process independent of the strength
or weakness of the underlying cardinality estimation.

5.2 Baseline Algorithms
We consider the following baseline algorithms. These algo-

rithms are not meant to be a comprehensive list of heuristics
but rather representative of a class of solutions.

1. Exhaustive (EX): This is a dynamic program that ex-
haustively enumerates all join plans avoiding Cartesian
products.

2. left-deep (LD): This is a dynamic program that ex-
haustively enumerates all left-deep join plans.

3. Right-Deep (RD): This is a dynamic program that
exhaustively enumerates all right-deep join plans.

4. Zig-Zag (ZZ): This is a dynamic program that ex-
haustively enumerates all zig-zag trees (every join has
at least one base relation, either on the left or the
right) [42].

5. IK-KBZ (KBZ): This algorithm is a polynomial time
algorithm that decomposes the query graph into chains
and orders the chains based on a linear approximation
of the cost model [21].

6. QuickPick-1000 (QP): This algorithm randomly se-
lects 1000 join plans and returns the best of them. 1000
was selected to be roughly equivalent to the planning
latency of DQ [38].

5.3 Plan Cost
We now evaluate all of the baseline algorithms against DQ

on the three cost models. We use the same cost model for
optimization as well as scoring the final plans. All of the al-
gorithms consider join ordering without Cartesian products,
so EX is an optimal baseline. We report results in terms of
the suboptimality w.r.t. EX, namely costalgo/costEX.

We present results on all 113 JOB queries. We train on 80
queries and test on 33 queries. We do 4-fold cross validation
to ensure that every test query is excluded from the training
set at least once. The performance of DQ is only evaluated
on queries not seen in the training workload.

5.3.1 Cost Model 1
First, we consider optimizing CM1. These results repro-

duce the conclusions of [23], where left-deep plans are gen-
erally very good (utilize indexes very well) and there is little
need for zigzag or exhaustive enumeration. DQ is competi-
tive with these optimal solutions without a priori knowledge
of the index structure. In fact, DQ significantly outperforms
the other heuristic solutions KBZ and QP. While it is true
that KBZ also restricts its search to left-deep plans, it is
suboptimal for cyclic join graphs—its performance is hin-
dered since almost all of the queries in JOB contain cycles.
We found that QP struggles with the physical operator se-
lection, and a significant number of random samples are re-
quired to find a very narrow set of good plans (ones the use
indexes effectively).

Min Mean Max

QP 1.0 23.87 405.04
KBZ 1.0 3.45 36.78
RD 4.70 53.25 683.35
LD 1.0 1.08 2.14
ZZ 1.0 1.07 1.87
EX 1.0 1.0 1.0
DQ 1.0 1.32 3.11

Table 2: Cost relative to optimal plan under CM1.

These results are not surprising: they show that DQ, a
learning-based solution, reasonably matches performance on
cases where good heuristics exist. On average DQ is within
22% of the LD solution and in the worst case it is only 1.45×
worse than LD.

5.3.2 Cost Model 2
By simply changing the cost model, we can force the left-

deep heuristics to perform poorly. CM2 accounts for disk

usage in hybrid hash joins. In this cost model, none of the
heuristics match the exhaustive search over the entire work-
load. Since the the costs are largely symmetric for small
relation sizes there is little benefit to either left-deep or right-
deep pruning. Similarly zig-zag trees are only slightly bet-
ter, and the heuristic methods fail by orders of magnitude
on their worst queries.

Min Mean Max

QP 7.43 51.84 416.18
KBZ 5.21 29.61 106.34
RD 1.93 8.21 89.15
LD 1.75 7.31 65.45
ZZ 1.0 5.07 43.16
EX 1.0 1.0 1.0
DQ 1.0 1.68 11.64

Table 3: Cost relative to optimal plan under CM2.

DQ still comes close to exhaustive enumeration. It does
not perform as well as in the previous experiment (with its
worst query about 12× the optimal cost) but on average it
is still significantly better than the alternatives. Our exper-
iments suggest that as the memory limit becomes so small
that plans are affected, the heuristics begin to diverge from
the optimal solution, as seen in Table 4 below.

M = 108 M = 106 M = 104 M = 102

KBZ 1.0 3.31 30.64 41.64
LD 1.0 1.09 6.45 6.72
EX 1.0 1.0 1.0 1.0
DQ 1.04 1.42 1.64 1.56

Table 4: Mean relative cost vs. memory limit (# tuples in mem-
ory).

5.3.3 Cost Model 3
Finally, we illustrate results on the CM3 that allows for

the reuse of hash tables. Right-deep plans are no longer
inefficient in this model as they facilitate reuse of the hash
table (note right and left are simply conventions and there
is nothing important about the labels). The challenge is
that now plans have to contain a mix of left-deep and right-
deep structures. Zig-Zag tree pruning heuristic was exactly
designed for cases like this. Surprisingly, DQ is actually
significantly better than zig-zag enumeration. We observed
that bushy plans were necessary in a small number of queries
and DQ found lower cost solutions.

Min Mean Max

QP 1.43 16.74 211.13
KBZ 2.21 14.61 96.14
RD 1.83 5.25 69.15
LD 1.35 4.21 35.91
ZZ 1.0 3.41 23.13
EX 1.0 1.0 1.0
DQ 1.0 1.91 13.14

Table 5: Cost relative to optimal plan under CM3.

In summary, these results suggest that DQ is robust
against different cost model regimes, since it can learn to
adapt to workloads.

5.4 Planning Latency

4 5 6 7 8 9 10 11 12 15
Number of relations in each query group

10 1

100

101

102

103

104

105

106

Op
tim

ize
r l

at
en

cy
 (m

s)

quickpick-1000
right-deep
left-deep
zigzag
exhaustive
DQ

Figure 4: Optimizer latency on all JOB queries, grouped by the
number of relations in the query graph. Error bars represent ±
standard deviation around the mean; a total of 5 trials were run.
Discussion in §5.4.

Next, we report the planning time of DQ and several other
optimizers across the entire 113 JOB queries. The same
model in DQ is used to plan all queries. Implementations are
written in Java, single-threaded2, and reasonably optimized
at the algorithmic level (e.g., QuickPick would short-circuit
a partial plan if it’s already estimated to be more costly than
the current best plan)—but no significant efforts are spent
on low-level engineering (e.g., details such as bit twiddling
tricks [37] or optimized JVM GC behavior). Hence, the
relative magnitudes are more meaningful than the absolute
values. Experiments were run on an AWS EC2 c5.9xlarge
instance with a 3.0GHz Intel Xeon Platinum CPU and 72GB
memory.

Figure 4 groups the run times by number of relations in
each query graph. In the small-join regime, the overheads of
DQ are mostly attributed to interfacing with DL4J (creating
and filling the featurization buffers; JNI overheads due to
native CPU backend execution). These could have been op-
timized away by targeting a non-JVM engine and/or GPUs,
but we note that when the number of joins is small, exhaus-
tive enumeration would be the ideal choice.

In the large-join regime, DQ achieves drastic speedups:
for the largest joins DQ wins by up to 10,000× compared to
exhaustive enumeration. The gain mostly comes from the
batching optimization (§3.3), which upper-bounds the num-
ber of neural net invocations by the number of relations in a
query. We believe this is a profound performance argument
for such a learned optimizer—it would have an even more
unfair advantage when applied to larger queries or executed
on specialized accelerators [19].

5.4.1 Training Overhead
Of course, there is an overhead to collecting the data and

training a model. Sampling training plans from EX (§3.2)
on 80 queries took 30× more time than actually training
the model (154 minutes and under 5 minutes on a laptop,
respectively). We envision a real-world deployment strat-
egy in which, data collection is a byproduct of a normal
optimizer that runs in the background, and DQ acts an ad-
ditional learning layer.

5.5 Micro-benchmarks
In the subsequent experiments, we try to characterize

when DQ is expected to work and how efficiently.

5.5.1 Difficulty of Handling Selections
2To ensure fairness, for DQ we configure the underlying
BLAS library to use 1 thread. No GPU is used.

Figure 5: Accurately modeling the effects of single table predi-
cates requires more training data. Generating a modest number
of synthetic single table equality predicates can help. We plot the
mean relative cost of DQ as a function of the number of synthetic
predicates.

Next, we report how DQ’s performance changes due to
handling single-table selections. We run the 33 JOB query
templates (1) with only the join predicates (i.e., ignoring
the effects of single-table predicates) and (2) with selections
included. Results are averaged over 5-fold cross-validation
so all of the reported numbers are when the query is not seen
during training. We report the min, mean, and max cost of
the optimized plans relative to exhaustive enumeration.

Table 6 shows the results. It highlights an interesting dif-
ference between learning-based and enumeration-based op-
timization. Classical optimizers have an internal cost model
that relates predicate selectivities to join costs. On the other
hand, in DQ, this model is learned from data. Implicitly
learning this relationship can be difficult for a neural net-
work, if it has not observed a sufficient amount of distinct
predicates spaced at a variety of selectivities. In Table 6, we
show that if we ignore the effects of single table predicates,
DQ actually comes close to matching exhaustive enumer-
ation; when selections are handled, difficulties arise for a
learning-based optimizer.

CM1 CM2 CM3

No selections 1.07 1.13 1.01
With selections 1.32 1.68 1.91

Table 6: Effect of single table predicates on DQ’s mean relative
cost.

It is easy to generate a large dataset with a lot of different
join orders, but generating random predicates on the tables
can be more challenging. One approach to address this is-
sue is synthetic data augmentation (a technique popularized
by deep learning models in computer vision): we randomly
sample equality conditions on each of the tables and include
these synthetic queries in the training dataset. Specifically,
we generate random equality predicates on the columns that
have actual selections in the original workload; these predi-
cates are added to the join queries. Figure 5 shows how the
costs change when up to 100 random single-table selections
are included. With more data, DQ can better attribute the
effects of selections on join costs.

Selections are interesting because they have threshold ef-
fects on cost. Once a selectivity of a predicate on one of the
relations drops beyond a certain point, the set of low-cost
plans might drastically change. These results are both pos-
itive and negative. First, they illustrate that learning-based
approaches can easily be made robust to different phenom-
ena by manipulating the training data and/or the featur-

Figure 6: The mean relative cost (in log-scale) as a function of
the number of training queries seen by DQ. We include QuickPick-
1000 as a baseline.

ization. On the other hand, the system may not accurately
be able to assess its own confidence on previously unseen
plans. It might make predictions assuming smooth behavior
without knowledge of a drastic change due to selectivity.

5.6 Data Quantity/Relevance
We further evaluate the nature of training data required

by DQ, in terms of raw quantity (number of training queries
seen) and relevance (the relevance to the test workload).

5.6.1 Quantity
We consider the optimization with CM1. We vary the

number of training queries given to DQ and plot the mean
relative cost to optimal using the cross validation technique
described before. Figure 6 illustrates the relationship. DQ
requires about 30 training queries to match the performance
of QuickPick-1000.

We found that this break-even point roughly corresponds
to seeing all of the relations in a query at least once. In
fact, one can train the model on small queries and test it
on larger ones—as long as the relations are covered well. To
investigate its generalization power, we trained DQ on all
of the queries with ≤ 9 and 8 relations, respectively, and
tested on the remaining queries (out of a total of 113). For
comparison we include a baseline scheme of training on 80
random queries and testing on 33. Results (costs relative to
optimal) are shown in Table 7.

Training Queries Mean Relative Cost

Random 80 1.32
Train ≤ 9-way 82 1.61
Train ≤ 8-way 72 9.95

Table 7: DQ trained on small joins and tested on larger joins.

The results show that even when trained on subplans,
DQ performs relatively well and generalizes to larger joins
(recall, the workload contains up to 15-way joins). This
indicates that DQ indeed learns local structures—efficient
joining of small combinations of relations. When those lo-
cal structures do not sufficiently cover the cases of interest
during deployment, we see degraded performance.

5.6.2 Relevance of Training Data
Next, we consider the effect of different training data sam-

pling schemes. We consider the optimization with single ta-
ble predicates and use CM1. Figure 7 plots the performance
of different data sampling techniques each with 80 training
queries. The more relevant the training queries can be made

Figure 7: We plot the relative performance of DQ with different
training workloads. R80 is a dataset sampled independent of the
JOB workload with random joins from the schema and random
equality predicates. R80wp has random joins as before but con-
tains single table predicates from the workload. WK80 includes
80 actual queries sampled from the workload. T80 describes a
scheme where each of the 33 query templates is covered at least
once in sampling.

Figure 8: DQ trained on training data collected by QuickPick-
1000 , left-deep, or the bushy optimizer. Data variety boosts con-
vergence speed and final quality. We report the average relative
cost w.r.t. EX.

towards the test workload, the less data is required for good
performance.

It also shows that the performance does not completely
suffer with random queries. DQ still achieves a lower cost
compared to QuickPick-1000 even with random queries (4.16
vs. 23.87). This experiment illustrates that DQ does not
actually require a priori knowledge of the workload.

5.6.3 Training Data Generation
Next, we evaluate using different baseline optimizers for

collecting the training dataset. We consider the optimiza-
tion with CM1. We collect a varying amount of data sam-
pled from queries in the workload. We compare using
a QuickPick-1000 optimizer, left-deep optimizer, and the
bushy optimizer described earlier (Figure 8). All meth-
ods allow DQ to quickly converge to good solutions. The
dynamic programming-based methods, left-deep and bushy,
converge faster as they produce subplans as well as final
plans in the training data. In contrast, the QuickPick op-
timizer yields only 1000 random full plans per query. The
subplan structures offer variety valuable for training, and
they better cover the space of different relation combina-
tions that might be seen in testing.

5.6.4 Model Choices
In theory, with enough data, DQ should approach optimal

performance. The natural next question is where the gap
comes from in practice—is it the neural network’s ability to
represent the cost function (model-limited), or is it due to a
lack of training data (data-limited)? We ran an experiment
on the first 20 training queries. We intentionally feed DQ
the same queries during training and testing, with the goal
of measuring its ability to memorize training data. We train
the model to convergence, then measure the percentage of
20 queries where the learned optimizer exactly matched the
cost from the optimal optimizer.

CM1 CM2 CM3

With Predicates 90% 75% 90%
Without Predicates 100% 80% 95%

Table 8: % of queries where DQ exactly matches the optimal
optimizer.

We see that there is some inherent imprecision in the neu-
ral network, even if the exact testing query has been seen
before. We find that this has less to do with the linearity
or non-linearity of the cost function, but rather how “close”
good plans are in terms of cost. If there are a lot of roughly
similar good plans the neural network may not have enough
precision to differentiate between them (despite its vast rep-
resentational capacity). It is not simply an issue of under-
training: we found that increasing the number of epochs
from 10k to 100k had little effect on the final training error.
This does raise the question about our modeling choices. Ta-
ble 9 reports an ablation study of the featurization described
earlier (§3.1):

Graph Features Sel. Scaling Loss

No Predicates No No 0.087
Yes No 0.049
Yes Yes 0.049

Predicates No No 0.071
Yes No 0.051
Yes Yes 0.020

Table 9: Feature ablation.

Without features derived from the query graph (Fig-
ure 2b) and selectivity scaling (Figure 3a) the training loss
is 3.5× more. These results suggest that all of the different
features contribute positively for performance.

5.6.5 Sensitivity to Training Data
Classically, join optimization algorithms have been deter-

ministic. Except for QP, all of our baselines are determinis-
tic as well. Randomness in DQ (besides floating-point com-
putations) stems from what training data is seen. We run
an experiment where we provide DQ with 5 different train-
ing datasets and evaluate on a set of 20 hold-out queries.
We report the max range (worst factor over optimal minus
best factor over optimal) in performance over all 20 queries
in Table 10. For comparison, we do the same with QP over
5 trial samples.

CM1 CM2 CM3

QP 2.11× 1.71× 3.44×
DQ 1.59× 1.13× 2.01×

Table 10: Plan variance over trials.

We found that while the performance of DQ does vary due

to training data, the variance is relatively low. Even if we
were to account for this worst case, DQ would still be com-
petitive in our macro-benchmarks. It is also substantially
lower than that of QP, a true randomized algorithm.

5.6.6 Sensitivity to Faulty Cardinalities
In general, the cardinality/selectivity estimates computed

by the underlying RDMS do not have up-to-date accuracy.
All query optimizers, to varying degrees, are exposed to this
issue since using faulty estimates during optimization may
yield plans that are in fact suboptimal. It is therefore worth-
while to investigate this sensitivity and try to answer, “is the
neural network more or less sensitive than classical dynamic
programs and heuristics?”

In this microbenchmark, the optimizers are fed perturbed
base relation cardinalities (explained below) during opti-
mization; after the optimized plans are produced, they are
scored by an oracle cost model. This means, in particular,
DQ only sees noisy relation cardinalities during training and
is tested on true cardinalities. The workload consists of 20
queries randomly chosen out of all JOB queries; the join
sizes range from 6 to 11 relations. The final costs reported
below are the average from 4-fold cross validation.

The perturbation of base relation cardinalities works as
follows. We pick N random relations, the true cardinal-
ity of each is multiplied by a factor drawn uniformly from
{2, 4, 8, 16}. As N increases, the estimate noisiness increases
(errors in the leaf operators get propagated upstream in a
compounding fashion). Table 11 reports the final costs with
respect to estimate noisiness.

N = 0 N = 2 N = 4 N = 8

KBZ 6.33 6.35 6.35 5.85
LD 5.51 5.53 5.53 5.60
EX 5.51 5.53 5.53 5.60
DQ 5.68 5.70 5.96 5.68

Table 11: Costs (log10) when N relations have perturbed cardi-
nalities.

Observe that, despite a slight degradation in the N =
4 execution, DQ is not any more sensitive than the KBZ
heuristic. It closely imitates exhaustive enumeration—an
expected behavior since its training data comes from EX’s
plans computed with the faulty estimates.

5.7 Real Execution
Lastly, we use our Apache Calcite connector to execute

the learned plans on a real Postgres database. We force
join plans constructed by our optimizer suite by setting
join collapse limit = 1 in the database and we also set en-
able material = false to disable any intra-query materializa-
tion. We load the IMDB data into Postgres and create pri-
mary key indexes. We assume a cost model that uses index
joins when available and nested loop joins otherwise. All ex-
periments here were run on an EC2 t2.xlarge instance with
PostgreSQL 9.2.

Figure 9 illustrates the results on 4 queries from JOB.
In this physical design, left-deep plans (KBZ, ZZ, LD) are
preferred and are almost as effective as exhaustive plans. RD
plans are predictably slow as they don’t take advantage of
the indexes. QP plans are good only when they by chance
sample a left-deep strategy. Learning is competitive with
the good plans in all of the real queries.

Additionally, we evaluate fine-tuning the network based
on past execution data (§3.4). We execute 50 random join
plans and collect data from their execution; the network is
then fine-tuned (bars denoted as “DQF”). On two of the
queries (10a, 21a), we see significant speedups of up to 2×;
in the other two, there was no statistically significant change
due to fine-tuning.

6. RELATED WORK
Applications of machine learning in database internals

is still the subject of significant debate this year and
will continue to be a contentious question for years to
come [7,20,24,27]. An important question is what problems
are amenable to machine learning and AI solutions. We
believe that query optimization is one such sub-area. The
problems considered are generally hard and orders of mag-
nitude of performance are at stake. In this setting, poor
learning solutions will lead to slow but not incorrect execu-
tion, so correctness is not a concern.

Cost Function Learning Admittedly, we are not the first
to consider “learning” in the query optimizer and there are a
number of alternative architectures that one may consider.
The precursors to this work are attempts to correct query
optimizers through execution feedback. One of the seminal
works in this area is the LEO optimizer [25]. This optimizer
uses feedback from the execution of queries to correct inaccu-
racies in its cost model. The underlying cost model is based
on histograms. The basic idea inspired several other impor-
tant works such as [10]. The sentiment in this research still
holds true today; when Leis et al. extensively evaluated the
efficacy of different query optimization strategies they noted
that feedback and cost estimation errors are still challenges
in query optimizers [23]. A natural first place to include ma-
chine learning would be what we call Cost Function Learn-
ing, where statistical learning techniques are used to correct
or replace existing cost models. This is very related to the
problem of performance estimation of queries [3,39,40].

We actually started with this model, where a neural net-
work learns to predict the selectivity of a single relation pred-
icate. Results were successful, albeit very expensive from
a data perspective. To estimate selectivity on an attribute
with 10k distinct values, the training set had to include 1000
queries. This architecture suffers from the problem of fea-
turization of literals; the results are heavily dependent on
learning structure in literal values from the database that
are not always straightforward to featurize. This can be es-
pecially challenging for strings or other non-numerical data
types. A recent workshop paper does show some promising
results in using Deep RL to construct a good feature repre-
sentation of subqueries but it still requires > 10k queries to
train [30].

Adaptive Query Optimization Adaptive query process-
ing [5,12] as well as the related techniques to re-optimize
queries during execution [6,26] is another line of work that
we think is relevant to the discussion. Reinforcement learn-
ing studies sequential problems and adaptive query opti-
mization is a sequential decision problem over tuples rather
than subplans. We focus our study on optimization in fixed
databases and the adaptivity that DQ offers is at a work-
load level. Continuously updating a neural network can be
challenging for very fine-grained adaptivity, e.g., processing
different tuples in different ways.

Figure 9: We execute the plans on a PostgreSQL database and measure the runtimes. DQF denotes a learned plan with 50
queries of fine-tuning. Query 1a, 10a, 12a, and 21a from JOB are shown. Runtimes that greatly exceeded the best optimizers
are clipped.

Robustness There are a couple of branches of work that
study robustness to different parameters in query optimiza-
tion. In particular, the field of “parametric query optimiza-
tion”[17,35], studies the optimization of piecewise linear cost
models. The interesting part about DQ is it is agnostic to
this structure. It learns a heuristic from data identifying
different regimes where different classes of plans work. We
hope to continue experiments and attempt to interpret how
DQ is partitioning the feature space into decisions. There is
also a deep link between this work and least expected cost
(LEC) query optimization [11]. Markov Decision Processes
(the main abstraction in RL) are by definition stochastic
and optimize the LEC objective.

Join Optimization At Scale Scaling up join optimiza-
tion has been an important problem for several decades,
most recently [29]. At scale, several randomized approaches
can be applied. There is a long history of randomized al-
gorithms (e.g., the QuickPick algorithm [38]) and genetic
algorithms [9,33]. These algorithms are pragmatic and it is
often the case that commercial optimizers will leverage such
a method after the number of tables grows beyond a certain
point. The challenge with these methods is that their effi-
cacy is hard to judge. We found that QuickPick often varied
in performance on the same query quite dramatically.

Another heuristic approach is relaxation, or solve the
problem exactly under simplified assumptions. One straight-
forward approach is to simply consider greedy search avoid-
ing Cartesian products [13], which is also the premise of the
IK-KBZ algorithms [18,21]. Similar linearization arguments
were also made in recent work [29,36]. Existing heuristics
do not handle all types of non-linearities well, and this is
exactly the situation where learning can help. Interestingly
enough, our proposed technique has a O(n3) runtime, which
is similar to the linearizedDP algorithm described in [29].

7. EXTENSIONS
This work is meant to be an initial study of Deep Rein-

forcement Learning in the context of join optimization. We
list additional features that are easy to implement but felt
they were out of scope for this paper.

Sort Orders: We do not consider cost models for sorting,
sort-merge joins, or interesting orders. Keeping track of in-
teresting sort orders in subplans is actually not difficult in
our framework. They can be tracked as a set of additional
features.

Non-Foreign Key Inner Joins: We presented our
method with a featurization designed for inner joins over
foreign key relations. It is relatively straightforward to ex-
tend this model to join conditions composed of conjunctions
of binary expressions. Assume the maximum number of ex-

pressions in the conjunction is capped at N . As before, let
A be the set of all attributes in the database. Each expres-
sion has two attributes and an operator. As with featuriz-
ing the vertices we can 1-hot encode the attributes present.
We additionally have to 1-hot encode the binary operators
{=, 6=, <,>}. For each of the expressions in the conjunctive
predicate, we concatenate the binary feature vectors that
have its operator and attributes. Since the maximum num-
ber of expressions in the conjunction capped at N , we can
get a fixed sized feature vector for all predicates.

Re-training: It is relatively straightforward to periodi-
cally retrain the model as new data is collected to adjust
to changing tables and physical properties. Model training
takes a matter of minutes. We avoided this discussion as
evaluating this property requires a realistic benchmark that
shows data growing over time and the queries evolving ac-
cordingly.

8. DISCUSSION
Even today many database systems favor “exact” solu-

tions when the number of relations are small but switch to
approximations after a certain point. The algorithmic con-
nection between reinforcement learning and classical join op-
timization algorithms can provide a new perspective on join
optimization, with a polynomial time algorithm that can ap-
proach optimal performance given the right set of training
data and features. We studied the search problem factored
away from other concerns in query optimization. However,
this is not a fundamental architectural decision. It is popu-
lar in recent AI research to try “end-to-end” learning, where
problems that were traditional factored into subproblems
(e.g., self-driving cars involve separate models for localiza-
tion, obstacle detection and lane-following) are learned in a
single unified model. One can imagine a similar architec-
tural ambition for an end-to-end learning query optimizer,
which simply maps subplan features to measured runtimes.
This would require a significant corpus of runtime data to
learn from, and changes to the featurization and perhaps the
deep network structure we used here. But the fundamental
architecture would be quite similar. Exploring the extremes
of learning and query optimization in future work may shed
insights on pragmatic middle grounds.

As illustrated by the Cascades optimizer [15] and follow-on
work, cost-based dynamic programming—whether bottom
up or top-down with memoization—need not be restricted
to select-project-join blocks. Most query optimizations can
be recast into a space of algebraic transformations amenable
to dynamic programming, including asymmetric operators
like outer joins, cross-block optimizations including order
optimizations and “sideways information passing”, and even
non-relational operators like PIVOT. Of course this blows

up the search space, and new heuristic decisions come into
play for search. Large spaces are ideal for solutions like the
one we proposed.

9. REFERENCES
[1] Amazon Aurora Serverless.

https://aws.amazon.com/rds/aurora/serverless/.

[2] Apache Calcite. https://calcite.apache.org/.

[3] M. Akdere, U. Çetintemel, M. Riondato, E. Upfal, and S. B.
Zdonik. Learning-based query performance modeling and
prediction. In Data Engineering (ICDE), 2012 IEEE 28th
International Conference on, pages 390–401. IEEE, 2012.

[4] J. Arulraj and A. Pavlo. How to build a non-volatile
memory database management system. In Proceedings of
the 2017 ACM International Conference on Management
of Data, pages 1753–1758. ACM, 2017.

[5] R. Avnur and J. M. Hellerstein. Eddies: Continuously
adaptive query processing. In ACM sigmod record,
volume 29, pages 261–272. ACM, 2000.

[6] S. Babu, P. Bizarro, and D. DeWitt. Proactive
re-optimization. In Proceedings of the 2005 ACM SIGMOD
international conference on Management of data, pages
107–118. ACM, 2005.

[7] P. Bailis, K. S. Tai, P. Thaker, and M. Zaharia. Don’t
throw out your algorithms book just yet: Classical data
structures that can outperform learned indexes.
https://dawn.cs.stanford.edu/2018/01/11/index-
baselines/, 2017.

[8] R. Bellman. Dynamic programming. Princeton University
Press, 1957.

[9] K. Bennett, M. C. Ferris, and Y. E. Ioannidis. A genetic
algorithm for database query optimization. Computer
Sciences Department, University of Wisconsin, Center for
Parallel Optimization, 1991.

[10] S. Chaudhuri, V. Narasayya, and R. Ramamurthy. A
pay-as-you-go framework for query execution feedback.
Proceedings of the VLDB Endowment, 1(1):1141–1152,
2008.

[11] F. Chu, J. Halpern, and J. Gehrke. Least expected cost
query optimization: what can we expect? In Proceedings of
the twenty-first ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems, pages
293–302. ACM, 2002.

[12] A. Deshpande, Z. Ives, V. Raman, et al. Adaptive query
processing. Foundations and Trends R© in Databases,
1(1):1–140, 2007.

[13] L. Fegaras. A new heuristic for optimizing large queries. In
International Conference on Database and Expert Systems
Applications, pages 726–735. Springer, 1998.

[14] R. H. Gerber. Data-flow query processing using
multiprocessor hash-partitioned algorithms. Technical
report, Wisconsin Univ., Madison (USA), 1986.

[15] G. Graefe. The cascades framework for query optimization.
IEEE Data Eng. Bull., 18(3):19–29, 1995.

[16] G. Graefe and W. McKenna. The volcano optimizer
generator. Technical report, COLORADO UNIV AT
BOULDER DEPT OF COMPUTER SCIENCE, 1991.

[17] A. Hulgeri and S. Sudarshan. Parametric query
optimization for linear and piecewise linear cost functions.
In Proceedings of the 28th international conference on Very
Large Data Bases, pages 167–178. VLDB Endowment,
2002.

[18] T. Ibaraki and T. Kameda. On the optimal nesting order
for computing n-relational joins. ACM Transactions on
Database Systems (TODS), 9(3):482–502, 1984.

[19] N. P. Jouppi, C. Young, N. Patil, D. Patterson,
G. Agrawal, R. Bajwa, S. Bates, S. Bhatia, N. Boden,
A. Borchers, et al. In-datacenter performance analysis of a
tensor processing unit. In Computer Architecture (ISCA),
2017 ACM/IEEE 44th Annual International Symposium
on, pages 1–12. IEEE, 2017.

[20] T. Kraska, A. Beutel, E. H. Chi, J. Dean, and N. Polyzotis.
The case for learned index structures. In Proceedings of the
2018 International Conference on Management of Data,
pages 489–504. ACM, 2018.

[21] R. Krishnamurthy, H. Boral, and C. Zaniolo. Optimization
of nonrecursive queries. In VLDB, volume 86, pages
128–137, 1986.

[22] M. Laskey, J. Lee, R. Fox, A. Dragan, and K. Goldberg.
Dart: Noise injection for robust imitation learning.
Conference on Robot Learning 2017, 2017.

[23] V. Leis, A. Gubichev, A. Mirchev, P. Boncz, A. Kemper,
and T. Neumann. How good are query optimizers, really?
Proceedings of the VLDB Endowment, 9(3):204–215, 2015.

[24] L. Ma, D. Van Aken, A. Hefny, G. Mezerhane, A. Pavlo,
and G. J. Gordon. Query-based workload forecasting for
self-driving database management systems. In Proceedings
of the 2018 International Conference on Management of
Data, pages 631–645. ACM, 2018.

[25] V. Markl, G. M. Lohman, and V. Raman. Leo: An
autonomic query optimizer for db2. IBM Systems Journal,
42(1):98–106, 2003.

[26] V. Markl, V. Raman, D. Simmen, G. Lohman, H. Pirahesh,
and M. Cilimdzic. Robust query processing through
progressive optimization. In Proceedings of the 2004 ACM
SIGMOD international conference on Management of
data, pages 659–670. ACM, 2004.

[27] M. Mitzenmacher. A model for learned bloom filters and
related structures. arXiv preprint arXiv:1802.00884, 2018.

[28] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K.
Fidjeland, G. Ostrovski, et al. Human-level control through
deep reinforcement learning. In Nature. Nature Research,
2015.

[29] T. Neumann and B. Radke. Adaptive optimization of very
large join queries. In Proceedings of the 2018 International
Conference on Management of Data, pages 677–692. ACM,
2018.

[30] J. Ortiz, M. Balazinska, J. Gehrke, and S. S. Keerthi.
Learning state representations for query optimization with
deep reinforcement learning. In Proceedings of the Second
Workshop on Data Management for End-To-End Machine
Learning, DEEM’18, pages 4:1–4:4, New York, NY, USA,
2018. ACM.

[31] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A.
Lorie, and T. G. Price. Access path selection in a relational
database management system. In Proceedings of the 1979
ACM SIGMOD international conference on Management
of data, pages 23–34. ACM, 1979.

[32] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre,
G. Van Den Driessche, J. Schrittwieser, I. Antonoglou,
V. Panneershelvam, M. Lanctot, et al. Mastering the game
of go with deep neural networks and tree search. In Nature.
Nature Research, 2016.

[33] M. Steinbrunn, G. Moerkotte, and A. Kemper. Heuristic
and randomized optimization for the join ordering problem.

The VLDB JournalâĂŤThe International Journal on Very
Large Data Bases, 6(3):191–208, 1997.

[34] R. S. Sutton, A. G. Barto, et al. Reinforcement learning:
An introduction. MIT press, 1998.

[35] I. Trummer and C. Koch. Multi-objective parametric query
optimization. Proceedings of the VLDB Endowment,
8(3):221–232, 2014.

[36] I. Trummer and C. Koch. Solving the join ordering problem
via mixed integer linear programming. In Proceedings of the
2017 ACM International Conference on Management of
Data, pages 1025–1040. ACM, 2017.

[37] B. Vance and D. Maier. Rapid bushy join-order
optimization with cartesian products. In ACM SIGMOD
Record, volume 25, pages 35–46. ACM, 1996.

[38] F. Waas and A. Pellenkoft. Join order selection (good
enough is easy). In British National Conference on

https://aws.amazon.com/rds/aurora/serverless/
https://calcite.apache.org/
https://dawn.cs.stanford.edu/2018/01/11/index-baselines/
https://dawn.cs.stanford.edu/2018/01/11/index-baselines/

Databases, pages 51–67. Springer, 2000.

[39] W. Wu, Y. Chi, H. Haćıgümüş, and J. F. Naughton.
Towards predicting query execution time for concurrent
and dynamic database workloads. Proceedings of the VLDB
Endowment, 6(10):925–936, 2013.

[40] W. Wu, Y. Chi, S. Zhu, J. Tatemura, H. Hacigümüs, and
J. F. Naughton. Predicting query execution time: Are
optimizer cost models really unusable? In Data
Engineering (ICDE), 2013 IEEE 29th International
Conference on, pages 1081–1092. IEEE, 2013.

[41] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. How
transferable are features in deep neural networks? In
Advances in neural information processing systems, pages
3320–3328, 2014.

[42] M. Ziane, M. Zäıt, and P. Borla-Salamet. Parallel query

processing with zigzag trees. The VLDB JournalâĂŤThe
International Journal on Very Large Data Bases,
2(3):277–302, 1993.

	1 Introduction
	2 Background
	2.1 Problem Setting
	2.2 Introduction to Reinforcement Learning
	2.3 Markov Model of Enumeration
	2.4 Long Term Reward of a Join
	2.5 Applying Reinforcement Learning

	3 Learning to Optimize
	3.1 Featurizing the Join Decision
	3.2 Generating the Training Data
	3.3 Execution after Training
	3.4 Feedback From Execution

	4 Optimizer Architecture
	4.1 Architecture and API
	4.2 Implementation

	5 Experiments
	5.1 Robustness to Cost Model
	5.2 Baseline Algorithms
	5.3 Plan Cost
	5.3.1 Cost Model 1
	5.3.2 Cost Model 2
	5.3.3 Cost Model 3

	5.4 Planning Latency
	5.4.1 Training Overhead

	5.5 Micro-benchmarks
	5.5.1 Difficulty of Handling Selections

	5.6 Data Quantity/Relevance
	5.6.1 Quantity
	5.6.2 Relevance of Training Data
	5.6.3 Training Data Generation
	5.6.4 Model Choices
	5.6.5 Sensitivity to Training Data
	5.6.6 Sensitivity to Faulty Cardinalities

	5.7 Real Execution

	6 Related Work
	7 Extensions
	8 Discussion
	9 References

