Why Spark?

JIANNAN WANG

Background

UC Berkeley's Research Centers

Requirements

- A common vision
- About 5 years
- At least three faculty
- A dozen students

Years	Title	Profs: Director, Co-Pls	Students
1977–1981	X-Tree: Tree Multiprocessor	Despain, Patterson, Sequin	12
1980–1984	RISC: Reduced Instructions	Patterson, Ousterhout, Sequin	17
1983-1986	SOAR: Smalltalk On A RISC	Patterson, Ousterhout	22
1985–1989	SPUR: Symbolic Processing Using RISCs	Patterson, Fateman, Hilfinger, Hodges, Katz, Ousterhout	21
1988–1992	RAID: Redundant Array of Inexpensive Disks	Katz, Ousterhout, Patterson, Stonebraker	16
1993–1998	NOW: Network of Workstations	Culler, Anderson, Brewer, Patterson	25
1997-2002	IRAM: Intelligent RAM	Patterson, Kubiatowicz, Wawrzynek, Yelick	12
2001–2005	ROC: Recovery Oriented Computing Systems	Patterson, Fox	11
2005–2011	RAD Lab: Reliable Adaptive Distributed Computing Lab	Patterson, Fox, Jordan, Joseph, Katz, Shenker, Stoica	30
2007–2013	Par Lab: Parallel Computing Lab	Patterson, Asanovic, Demmel, Fox, Keutzer, Kubiatowicz, Sen, Yelick	40
2011–2017	AMP Lab: Algorithms, Machines, and People	Franklin, Jordan, Joseph, Katz, Patterson, Recht, Shenker, Stoica	40
2013–2018	ASPIRE Lab	Asanovic, Alon, Bachrach, Demmel, Fox, Keutzer, Nikolic, Patterson, Sen, Wawrzynek	40

AMPLab's Vision

Make sense of **BIG DATA** by tightly integrating algorithms, machines, and people

Example: Extract Value From Image Data

What are in the image?

How to solve the problem?

Deep Learning (Algorithms)
GPU Cluster (Machines)
ImageNet (People)

Spark's Initial Idea

Algorithms + Machines

Run ML Algorithms on Hadoop

Why is it slow?

- 1. The algorithms are iterative (i.e., multiple scans of data)
- 2. MapReduce writes/reads data to/from disk at each iteration

Solution

Keep data in memory

How About Fault Tolerance?

Resilient Distributed Datasets (RDD)

Main Idea: Logging the transformations (used to build an RDD) rather than the RDD itself

Zaharia et al. Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing. NSDI 2012: 15-28

Why Spark?

What Makes Spark Fast?

In-memory Computation

What you save?

- Serialization/Deserialization
- Compression/Decompression
- I/0 cost

CPU (and not I/O) is often the bottleneck ⁷

Ousterhout et al. Making Sense of Performance in Data Analytics Frameworks. NSDI 2015: 293-307

ИРТ 843 - SFU

Hardware Trends

	2010	2016	
Storage	50+MB/s (HDD)	500+MB/s (SSD)	10X
Network	1Gbps	10Gbps	10X

2010

CMPT 843 - SFU 11

~3GHz

What Makes Spark Fast?

Project Tungsten: Bringing Apache Spark Closer to Bare Metal

by Reynold Xin and Josh Rosen
Posted in **ENGINEERING BLOG** | April 28, 2015

- 1. Memory Management and Binary Processing
- 2. Cache-aware computation
- 3. Code generation

Why Spark?

What Makes Spark Easy-to-Use?

Over 80 High-level Operators

WordCount (Mapreduce)

```
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
public class WordCount extends Configured implements Tool {
    public static class TokenizerMapper
    extends Mapper<LongWritable, Text, Text, IntWritable>{
        private final static IntWritable one = new IntWritable(1);
        private Text word = new Text();
        public void map(LongWritable key, Text value, Context context
) throws IOException, InterruptedException {
            StringTokenizer itr = new StringTokenizer(value.toString());
            while (itr.hasMoreTokens()) {
                 word.set(itr.nextToken());
                 context.write(word, one);
```

```
public static class IntSumReducer
extends Reducer<Text, IntWritable, Text, IntWritable> {
    private IntWritable result = new IntWritable();
    public void reduce(Text key, Iterable<IntWritable> values,
             Context context
             ) throws IOException, InterruptedException
         for (IntWritable val : values) {
             sum += val.get();
         result.set(sum);
         context.write(key, result);
public static void main(String[] args) throws Exception {
    int res = ToolRunner.run(new Configuration(), new WordCount(), args);
    System.exit(res);
public int run(String[] args) throws Exception {
   Configuration conf = this.getConf();
   Job job = Job.getInstance(conf, "word count");
     job.setJarByClass(WordCount.class);
    job.setInputFormatClass(TextInputFormat.class);
    iob.setMapperClass(TokenizerMapper.class);
     job.setCombinerClass(IntSumReducer.class);
     job.setReducerClass(IntSumReducer.class);
     job.setOutputKeyClass(Text.class);
     job.setOutputValueClass(IntWritable.class);
     job.setOutputFormatClass(TextOutputFormat.class);
    TextInputFormat.addInputPath(job, new Path(args[0]));
TextOutputFormat.setOutputPath(job, new Path(args[1]));
     return job.waitForCompletion(true) ? 0 : 1;
```

WordCount (Spark)

```
text_file = spark.textFile("hdfs://...")

text_file.flatMap(lambda line: line.split())
    .map(lambda word: (word, 1))
    .reduceByKey(lambda a, b: a+b)
```

What Makes Spark Easy-to-Use?

Unified Engine

Easy to manage, learn, and combine functionality

Analogy

Specialized Devices

Unified Device

What Makes Spark Easy-to-Use?

Integrate Broadly

Languages:

Data Sources:

Environments:

Summary

A brief history of Spark

- UC Berkeley's AMPLab
- Spark's Initial Idea

Spark is fast

- In-memory Computation
- Tungsten Project

Spark is easy-to-use

- High-level Operators
- Unified Engine
- Integrate Broadly

RISELab

From live data to real-time decisions

AMPLab

From batch data to advanced analytics