
DYNAMO: AMAZON’S HIGHLY 
AVAILABLE KEY-VALUE STORE 

Presenter: Jill Zhou



What is Dynamo?

■ A highly available key-value storage system

■ To achieve always-on experience, Dynamo sacrifices consistency under certain 
failure scenarios.

■ Dynamo is a reliable and efficient, highly scalable storage system.



Service-oriented 
architecture of Amazon’s 
platform 

■ dynamic web content is 
generated by page rendering 
components which in turn 
query many other services 

■ Some services act as 
aggregators by using several 
other services to produce a 
composite response. 

■ A service can use different 
data stores to manage its 
state and these data stores 
are only accessible within its 
service boundaries 



SYSTEM ARCHITECTURE



the core distributed systems techniques 
used in Dynamo:
■ Partitioning
■ Replication
■ Versioning
■ Membership
■ failure handling 
■ scaling



System Interface

■ Two operations:
– get(key)
■ Return a single object or a list of objects

– put(key, context, object)
■ Determine where the replicas of object should be placed based on the key
■ Writes the replicas to disk



Partitioning Algorithm

■ Technique:
– Consistent Hashing�

■ h(k) in [min, max]
■ [min, max] is the positions in a
ring

■ Each node (storage host) has
its own position (a number)

■ For a data item (key, value),
h(key) can be used to decide
the store position.

■ Advantage:
– Scale incrementally



Replication

■ To achieve high availability and
durability, Dynamo replicates its
data:
– On N hosts (clockwise

successor)
– Usually set N = 3



Data Versioning

■ Updates to be propagated to all
replicas asynchronously

– Put() may return before the
updates applied to all replicas

– Get() may return an object that
does not have the latest
updates.

■ It causes many versions of data

■ E.g.:
– “add to cart” and “delete item 

from cart” are two put 
requests

– If a customer wants to add an 
item to (or remove from) a 
shopping cart and the latest 
version is not available

– the item is added to (or 
removed from) the older 
version and the divergent 
versions are reconciled later



Data Versioning
■ In order to merge different versions of data 

and preserve all information correctly, 
Dynamo use Vector clock:

– A list of (node, counter) pairs
– One vector clock is associated with every 

version of every object
– From vector clock, we can tell whether two 

versions of an object are on parallel 
branches or have a causal ordering 

– If the counters on the first object’s clock are 
less-than-or-equal to all of the nodes in the 
second clock, then the first is an ancestor of 
the second and can be forgotten. 

– Otherwise, the two changes are considered 
to be in conflict and require reconciliation. 



Execution of get () and put () operations 

■ Read and write operations involves the first N healthy nodes in the preference lists
– Nodes not in the list will not be in charge
– A node handling a read or write operation is known as the coordinator. 

■ Dynamos uses consistency protocol to maintain consistency among its replicas
– This protocol has two key configurable values: R and W 
■ R is the minimum number of nodes that must participate in a successful read 

operation. 
■ W is the minimum number of nodes that must participate in a successful write 

operation. 



Execution of get () and put () operations 

■ Upon receiving a put() request for a key
– the coordinator generates the vector clock for the new version
– writes the new version locally. 
– The coordinator then sends the new version (along with the new vector clock) to the 

N highest-ranked reachable nodes. 
– If at least W-1 nodes respond then the write is considered successful. 

■ for a get() request:
– the coordinator requests all existing versions of data for that key from the N 

highest-ranked reachable nodes in the preference list for that key
– waits for R responses before returning the result to the client. 
– If gathering multiple versions of the data, it returns all the versions it deems to be 

causally unrelated. 



Handling Failures: 
Hinted Handoff

■ If A is temporarily failed, send
the replica to node D.

– The replica has hint in
meta data say it should
be A

■ Node D receive hinted 
replicas will keep them in a 
separate local database

■ Upon detecting that A has 
recovered, D will attempt to 
deliver the replica to A, and
may delete the replica.



Handling permanent failures: Replica 
synchronization 
■ There are scenarios under which hinted replicas become unavailable before they can be 

returned to the original replica node

■ To detect the inconsistencies between replicas faster and to minimize the amount of 
transferred data, Dynamo uses Merkle trees:

– Merkle tree is a hash tree where leaves are hashes of the values of individual keys. 
■ Advantage:

– each branch of the tree can be checked independently without requiring nodes to 
download the entire tree or the entire data set 

– if the hash values of the root of two trees are equal, then the values of the leaf 
nodes in the tree are equal and the nodes require no synchronization. If not, the 
nodes may exchange the hash values of children and the process continues until it 
reaches the “out of sync” leaves of the trees



Membership
■ Ring Membership 

– When a node starts for the first time, it chooses its set of tokens (virtual nodes in 
the consistent hash space) and maps nodes to their respective token sets. 

– The mapping is persisted on disk 

■ External Discovery 
– The mechanism described above could temporarily result in a logically partitioned

Dynamo ring. 
■ For example, the administrator could contact node A to join A to the ring, then contact 

node B to join B to the ring. In this scenario, nodes A and B would each consider itself a 
member of the ring, yet neither would be immediately aware of the other. 

– To prevent logical partitions, some Dynamo nodes play the role of seeds. 
■ Seeds are nodes that are discovered via an external mechanism and are known to all 

nodes 
■ all nodes eventually reconcile their membership with a seed 



Failure Detection

■ node A may consider node B failed if node B does not respond to node A’s messages 
(even if B is responsive to node C's messages).

■ If there is a steady rate of client requests generating inter-node communication in 
the Dynamo ring:

– a node A quickly discovers that a node B is unresponsive when B fails to 
respond to a message

– Node A then uses alternate nodes to service requests that map to B's 
partitions

– A periodically retries B to check for the latter's recovery
■ In the absence of client requests to drive traffic between two nodes, both nodes do 

nothing



Adding/Removing 
Storage Nodes

■ When X is added to the 
system, it is in charge of 
storing keys in the ranges (F, 
G], (G, A] and (A, X]. 

■ As a consequence, nodes B, 
C and D no longer have to 
store the keys in these 
respective ranges. 

■ When a node is removed 
from the system, the 
reallocation of keys happens 
in a reverse process. 

Node X



IMPLEMENTATION



the main patterns in which Dynamo is 
used
■ Business logic specific reconciliation:

– In case of divergent versions, the client application performs its own 
reconciliation logic.

■ Timestamp based reconciliation: 
– In case of divergent versions, Dynamo performs simple timestamp based 

reconciliation logic of “last write wins” 

■ High performance read engine: 
– these services have a high read request rate and only a small number of 

updates 
– Dynamo replicates their data across multiple nodes thereby offering 

incremental scalability. 



Ensuring Uniform 
Load distribution 

■ Strategy 1: T random tokens 
per node and partition by 
token value

■ Strategy 2: T random tokens 
per node and equal sized 
partitions

■ Strategy 3: Q/S tokens per 
node, equal-sized partitions 

– divides the hash space 
into Q equally sized 
partitions 

– S is the number of nodes 
in the system



Ensuring Uniform 
Load distribution 

■ strategy 3 achieves the best 
load balancing efficiency 

■ strategy 2 has the worst 
load balancing efficiency. 



TAKE AWAY



A SUMMARY OF 
THE LIST OF 
TECHNIQUES 
DYNAMO USES 
AND THEIR 
RESPECTIVE 
ADVANTAGES 



Q&A


