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Overview

■ Main topic: How system R chooses Access paths for queries?
– System R:
■ Build by IBM
■ First implementation of SQL

– Queries:
■ Simple (single relation)
■ Complex (like joins)

– Principle to choose Access paths: minimizes total cost



PROCESSING OF AN
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Four Phases



Processing of an SQL
statement (four phases)
■ Parsing:

– Accept a SQL query
– check for correct syntax

■ Optimization:
– Catalog lookup:

■ Verify the existence of names of tables and columns in
system R catalogs

■ retrieve information
■ Statistics of the referred relations

– E.g.: datatype and length of each column
■ Check available access paths

– Check for semantic error
– Access path selection (execution plan)
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Processing of an SQL
statement (four phases)
■ Code generation

– Translates execution plan into machine
language

– check for correct syntax

■ Execution
– Call the System R internal Storage System
(RSS) to scan the storage location
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THE RESEARCH
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The Research Storage System (RSS):
A brief introduction

■ The RSS responsible for maintaining physical storage of:
– Relations
– Access paths on these relations
– Locking
– Logging
– Recovery facilities

■ RSS structure:
– Tuples composed relations
– Relations stored in pages
– Pages are organized into segments
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The Research Storage System (RSS):
accessing tuples

■ RSS scan: A scan returns a tuple at a time along a given access path.

■ Two Types of scan:
– Segment Scan: find all tuples of a given relation
■ All none empty pages in a segment will be touched for one time

– Index Scan:
■ Index may be created by a system R on one or more columns relation
■ Stored in separate pages (not the pages containing the relations)
■ During the scan, Index page will be touched only once, but data pages may be 

touched more than once.



ACCESS PATHS



Cost for single relation access paths

■ COST = PAGE FETCHES + W * (RSI CALLS)
– PAGE FETCHES: Weighted measure of I/O and CPU utilizations
– W: an adjustable weighting factor between I/O and CPU
– RSI CALLS: predicted number of tuple return from the RSS

■ Minimum cost  path: a path need minimum resources (such as minimum number of 
tuples)



Access path selection for joins

■ Nested loops method
– E.g.: SQL: r join s
■ r is called the outer relation
■ s is called the inner relation
■ For each tuple in the outer relation:

– Scan for the tuple satisfied the join condition in the inner relation

■ Merging scan method
– Require the outer and inner relations to be scanned in join column order
– Only applied to equi-joins
■ E.g. table1.column1 = table2.column2



Access path selection for joins
■ M-way joins:

– A sequence of 2-way joins
■ Join the first two relations, and use the result to join the third, and so on.

– E.g. ((A JOIN B) JOIN C)
– Nested loops joins and merge scan joins may be mixed
– The cost of joining in different orders can be substantially different
■ E.g. different orders may apply different join methods.

– A heuristic method to reduce the join order
■ Only consider the join order which have join predicates relating the inner relation to

the other relations already participating in the join
■ E.g. given T1.col1 = T2.col2, and T2.col2 = T3.col3

– There are no following permutations: T1-T3-T2 & T3-T1-T2



Computation of costs for joins

■ The costs for joins are computed from the costs of the scans on each of the relations and the
cardinalities

■ Nested loop join cost:
– C-nested-loop-join(path1, path2) = C-outer(path1) + N * C-inner(path2)

■ Merge scan join cost:
– C-merge(path1, path2) = C-outer(path1) + N * C-inner(path2)

■ Meaning of symbols:
– C-outer(path1): cost of scanning the outer relation via path 1
– C-inner(path2): cost of scanning the inner relations via path 2, applying all applicable

predicates
– N: be the cardinality of the outer relation tuples, which satisfy the applicable predicates.



A EXAMPLE



A walk through of an example 
of searching cheapest path

■ On EMP table: assume the index on job is the 
cheapest path.

– Segment scan is pruned

■ On DEPT table: We assume the index on DNO is 
cheaper

– Segment scan is pruned

■ On JOB table: Segment scan is cheaper
– Kept both



CREATE SEARCH TREE FOR SINGLE RELATIONS



Joining second relation 
to the single relations
■ For (EMP, JOB) join, we 

assume that is cheapest by 
accessing Job on the job 
index.

■ For (EMP, DEPT) join, we 
assume that the DNO 
relation is cheaper



Joining second 
relation to the single 
relations
■ In DEPT table, the cheapest 

scan is in DNO order.

■ In EMP table, the job index is 
the cheapest access path.



NESTED QUERIES



NESTED
QUERY
■ A query may appear as an 

operand of a predicate of 
the form “expression 
operator query”. Such a 
query is called a Nested
Query or a Subquery.

■ The optimizer will arrange
the subquery to be
evaluated at first.



Correlation Subquery

■ Correlation Subquery: A subquery may 
contain a reference to a value obtained 
from a candidate tuple of a higher level 
query block

■ A correlation subquery must in principle 
be re-evaluated for each candidate tuple
from the referenced query block. 



CONCLUSION



conclusion

■ Describing the access path selection methods in system R
– Single paths
– For joins
■ Nested loop join method
■ Merging scan method

■ How to calculate the cost of each type of paths?
– COST = PAGE FETCHES + W * (RSI CALLS)

■ Nested Queries
– Evaluate the lowest level to top level



Q & A


