ACCESS PATH SELECTION IN A
RELATIONAL DATABASE
MANAGEMENT SYSTEM

Presenter: Jill Zhou

Overview

m Main topic: How system R chooses Access paths for queries?
- System R:
m Build by IBM
m First implementation of SQL
- Queries:
m Simple (single relation)
m Complex (like joins)
- Principle to choose Access paths: minimizes total cost

PROCESSING OF AN
SQL STATEMENT

FFFFFFFFFF

Processing of an SQL
statement (four phases)

m Parsing:
- Accept a SOL query
— check for correct syntax

m Optimization:
- Catalog lookup:

m Verify the existence of names of tables and columns in
system R catalogs

retrieve information
m Statistics of the referred relations
- E.g.: datatype and length of each column
m Check available access paths

- Check for semantic error
- Access path selection (execution plan)

Given SQL
QUERY

Parsing

l No syntax error

Optimization

Execution plan

Code
Generation

lMachine language

Execution

Processing of an SQL
statement (four phases)

m Code generation

- Translates execution plan into machine
language

— check for correct syntax

m Execution

— Call the System R internal Storage System
(RSS) to scan the storage location

Given SQL
QUERY

Parsing

l No syntax error

Optimization

Execution plan

Code
Generation

lMachine language

Execution

THE RESEARCH
STORAGE SYSTEM (RSS)

The Research Storage System (RSS):

A brief introduction relation
| R page B
m The RSS responsible for maintaining physical storage of:
- Relations
— Access paths on these relations
- Locking
- Logging

segments

- Recovery facilities

m RSS structure:

- Tuples composed relations
- Relations stored in pages

- Pages are organized into segments

The Research Storage System (RSS):
accessing tuples

m RSS scan: A scan returns a tuple at a time along a given access path.

m [wo Types of scan:
- Segment Scan: find all tuples of a given relation
m All none empty pages in a segment will be touched for one time

- Index Scan:
m Index may be created by a system R on one or more columns relation

m Stored in separate pages (not the pages containing the relations)

m During the scan, Index page will be touched only once, but data pages may be
touched more than once.

ACCESS PATHS

Cost for single relation access paths

m COST = PAGE FETCHES + W * (RSI CALLS)
- PAGE FETCHES: Weighted measure of |/0 and CPU utilizations
- W: an adjustable weighting factor between /0 and CPU
— RSI CALLS: predicted number of tuple return from the RSS

m Minimum cost path: a path need minimum resources (such as minimum number of
tuples)

Access path selection for joins

m Nested loops method
- E.8.:SQL:rjoin s
m ris called the outer relation
m S is called the inner relation
m For each tuple in the outer relation:
- Scan for the tuple satisfied the join condition in the inner relation

m Merging scan method
- Require the outer and inner relations to be scanned in join column order
- Only applied to equi-joins
m E.g tablel.columnl = table2.column2

Access path selection for joins

m M-way joins:
- A sequence of 2-way joins
m Join the first two relations, and use the result to join the third, and so on.
- E.g. ((AJOIN B) JOIN C)
— Nested loops joins and merge scan joins may be mixed
— The cost of joining in different orders can be substantially different
m E.g. different orders may apply different join methods.
- A heuristic method to reduce the join order

m Only consider the join order which have join predicates relating the inner relation to
the other relations already participating in the join

m E.g givenTl.coll=T2.col2,and T2.col2 = T3.col3
- There are no following permutations: T1-T3-T2 & T3-T1-T2

Computation of costs for joins

m The costs for joins are computed from the costs of the scans on each of the relations and the
cardinalities

m Nested loop join cost:

- C-nested-loop-join(path1, path2) = C-outer(path1l) + N * C-inner(path2)
m Merge scan join cost:

- C-merge(pathl, path2) = C-outer(pathl) + N * C-inner(path2)
m Meaning of symbols:

- C-outer(pathl): cost of scanning the outer relation via path 1

- C-inner(path2): cost of scanning the inner relations via path 2, applying all applicable
predicates

- N: be the cardinality of the outer relation tuples, which satisfy the applicable predicates.

A EXAMPLE

Fr s A walk through of an example
| of searching cheapest path

TYPIST
SALES
MECHANIC

SELECT NAME, TITLE, SAL, DNAME
FROM EMP, DEPT, JOB
WHERE TITLE="CLERK"

AND EMP DNO-DEFT.DNO m On EMP table: assume the index on job is the

AND EMP.20OB=J0B.JOB

‘““Retrieve the name, salary, job titie, and department Ch ea pest path .
name of employees who are clerks and work for
- Segment scan is pruned

departments in Denver.”’

Figure 1. JOIN example

eme: 1 - m On DEPT table: We assume the index on DNO is
I EMP.DNO I IE“M?’:‘.‘.JOB I :gnm::t ' Cheaper
EMP
N N, - N

c(Emp.oNO) clemp_soB) C(EMP seg. scan) - Segment scan is pruned
. x - pruned

DE"T=] index [Segment ' m On JOB table: Segment scan is cheaper
- Kept both

DEPT

N
CfDEPT sag. scan)

N
cloert.onO)
x pruned

JOB:
index segment
JOB.JOB scan on
. JOB

N, N
C{408.J0B) cI08 seq. scan)

Figure 2.

EMP:"

DEPT:

JOB:

w

index
EMP.DNO

N1
C{EMP.DNO)

index
DEPY.ONO

N
cloerr.onO)

index
JOB.JOB

Ny
<{(108.J08B)

index segment
EMP_JOB scan on

EMP

N'l

C{EMP seg. scan)}

X - pruned

N, -
C(EMP_JOB)

Segment
Scan on
DEPT

N
C?DEPT seg. scan)

> pruned

segment
scan on
JOoB

N .
: CE’OB seg. scan)

Figurxre 2.

Index
EMP.J0B

{ndex
EMP.DNO

N\ N‘I
C(EMP.CNQ) C{EMP.JOB|
DNO order JOB8 order

Figure 3.

C(DEPT.ONO)
DNO order

C{J0B.JOB}
JOB order

Search tree for single

segment
scan
Jo8

N3
C{JOB seg. scan}
unordered

ralations

CREATE SEARCH TREE FOR SINGLE RELATIONS

Joining second relation

to the single relations
(EMP, DEPT) i (EMP, JOB) (DEPT, EMP) (JOB, EMP) m For (EMP, JOB) join, we
Index nd assume that is cheapest by
K 5 oo HPRIOB 108108 accessing Job on the job

DEPT.DNO index.

N, Ny For (EMP, DEPT) join, we
' assume that the DNO

Index Index Index [ndex [ndex Index relation is cheaper
DEPT.ONO DEPT.DNO 408.J0B JoB.Jo8 EMP.JOB EMP.JOB

N, ® N, ® Ng @ NEL Ng ® Nsﬂ
C(E;DNO) C(E:JOBI C{E;DNO) ClE:JOBI C(D;DNO) C(J:J.OB) ClJ :eg scan} SELECT NAME, TITLE, SAL, DNAME
N,C¢(D.ONO] N,Cg(DONO) N,CcW.JOB) N,CrUJJOB) N,Cp{EDNO) NiC/(EJOB) NsC,(EJOB) FROM EMP, DEPT, JOB
DNO order JOB order DNO order JOB order DNO order JOB order unordered WHERE TITLE="CLERK"
AND LOC="DENVER’

. . . AND EMP.DNO=DEPT.DNO
Figure 4. Extended search tree for second relation (nested loop join) AND EMP.JOB=JOB.JOB

Joining second

(EMP,DEPT) {EMP, JOB) * (DEPT, EMP) {JOB, EMP} relation to the Slngle
relations

Index index index Index Segment
E.DNO E.JOB D.DNO JJ0B scan
| : 108

N, N, N, Ny AYY m In DEPT table, the cheapest

Sort JOB seg scan Sort JOB scan is in DNO order.
by JOB inte L, seg. scan

ol m In EMP table, the job index is
the cheapest access path.

Merge Merge Merge Merge

E.JOB D.ONO JJOB Ly

with with with with
D.DNO - JJos E.DNO E.JOB EJOB

Ne Ng N, N, Ng Ny
DNO order DNOorder - JOB order DNO order DNO order JOB order JOB order
+ O+o0 - in 2 0 +0

(ONG'G 'ONG'3) 0™y
(sore 'gora) o
(% 'gor3) o=
{ueas Bss gOr) Y%
{*1'ona-ay
(ona'3 ‘ong'a}
(sor3 ‘aorn ™
{ueas ‘Bat gOr) ¥

Figure 5. Extended search tree for second relation (merge join)

NESTED QUERIES

SELECT NAME

FROM EMPLOYEE

WHERE SALARY =
(SELECT AVG(SALARY)
FROM EMPLOYEE)

S

If the operator is IN or NOT 1IN then
the subquery may return a set of values.
For example: |

SELECT NAME

FROM EMPLOYEE

WHERE DEPARTMENT_NUMBER 1IN
(SELECT DEPARTMENT_NUMBER
FROM DEPARTMENT
WHERE LOCATION='DENVER')

NESTED
QUERY

m A query may appear as an
operand of a predicate of
the form “expression
operator query”. Such a
query is called a Nested
Query or a Subquery.

m The optimizer will arrange
the subquery to be
evaluated at first.

Correlation Subquery

m Correlation Subquery: A subquery may
contain a reference to a value obtained
from a candidate tuple of a higher level
query block

m A correlation subquery must in principle
be re-evaluated for each candidate tuple
from the referenced query block.

the query:
SELECT NAME
FROM ENPLOYEE X
WHERE SALARY > (SELECT SALARY
FROM EMPLOYEE
WHERE EMPLOYEE_NUMBERe
5 MANAGER)

CONCLUSION

conclusion

m Describing the access path selection methods in system R
- Single paths
- Forjoins
m Nested loop join method
m Merging scan method
m How to calculate the cost of each type of paths?
— COST = PAGE FETCHES + W * (RSI CALLS)

m Nested Queries
- Evaluate the lowest level to top level

