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Overview

m Main topic: How system R chooses Access paths for queries?
-  System R:
m Build by IBM
m First implementation of SQL
- Queries:
m  Simple (single relation)
m Complex (like joins)
- Principle to choose Access paths: minimizes total cost
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Processing of an SQL
statement (four phases)

m Parsing:
- Accept a SOL query
— check for correct syntax

m Optimization:
- Catalog lookup:

m Verify the existence of names of tables and columns in
system R catalogs

retrieve information
m  Statistics of the referred relations
-  E.g.: datatype and length of each column
m Check available access paths

- Check for semantic error
- Access path selection (execution plan)
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Processing of an SQL
statement (four phases)

m Code generation

- Translates execution plan into machine
language

— check for correct syntax

m Execution

— Call the System R internal Storage System
(RSS) to scan the storage location
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The Research Storage System (RSS):

A brief introduction relation
| R page B
m The RSS responsible for maintaining physical storage of:
- Relations
— Access paths on these relations
- Locking
- Logging

segments

- Recovery facilities

m RSS structure:

- Tuples composed relations
- Relations stored in pages

- Pages are organized into segments




The Research Storage System (RSS):
accessing tuples

m RSS scan: A scan returns a tuple at a time along a given access path.

m [wo Types of scan:
- Segment Scan: find all tuples of a given relation
m All none empty pages in a segment will be touched for one time

- Index Scan:
m Index may be created by a system R on one or more columns relation

m Stored in separate pages (not the pages containing the relations)

m During the scan, Index page will be touched only once, but data pages may be
touched more than once.




ACCESS PATHS




Cost for single relation access paths

m COST = PAGE FETCHES + W * (RSI CALLS)
- PAGE FETCHES: Weighted measure of |/0 and CPU utilizations
- W: an adjustable weighting factor between /0 and CPU
— RSI CALLS: predicted number of tuple return from the RSS

m Minimum cost path: a path need minimum resources (such as minimum number of
tuples)




Access path selection for joins

m Nested loops method
- E.8.:SQL:rjoin s
m ris called the outer relation
m S is called the inner relation
m For each tuple in the outer relation:
- Scan for the tuple satisfied the join condition in the inner relation

m Merging scan method
- Require the outer and inner relations to be scanned in join column order
- Only applied to equi-joins
m E.g tablel.columnl = table2.column2




Access path selection for joins

m M-way joins:
- A sequence of 2-way joins
m Join the first two relations, and use the result to join the third, and so on.
- E.g. ((AJOIN B) JOIN C)
— Nested loops joins and merge scan joins may be mixed
— The cost of joining in different orders can be substantially different
m E.g. different orders may apply different join methods.
- A heuristic method to reduce the join order

m Only consider the join order which have join predicates relating the inner relation to
the other relations already participating in the join

m E.g givenTl.coll=T2.col2,and T2.col2 = T3.col3
- There are no following permutations: T1-T3-T2 & T3-T1-T2



Computation of costs for joins

m The costs for joins are computed from the costs of the scans on each of the relations and the
cardinalities

m Nested loop join cost:

- C-nested-loop-join(path1, path2) = C-outer(path1l) + N * C-inner(path2)
m Merge scan join cost:

- C-merge(pathl, path2) = C-outer(pathl) + N * C-inner(path2)
m Meaning of symbols:

- C-outer(pathl): cost of scanning the outer relation via path 1

- C-inner(path2): cost of scanning the inner relations via path 2, applying all applicable
predicates

- N: be the cardinality of the outer relation tuples, which satisfy the applicable predicates.



A EXAMPLE




Fr s A walk through of an example
| of searching cheapest path
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Joining second relation
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NESTED QUERIES




SELECT NAME

FROM EMPLOYEE

WHERE SALARY =
(SELECT AVG(SALARY)
FROM EMPLOYEE)

S

If the operator is IN or NOT 1IN then
the subquery may return a set of values.
For example: |

SELECT NAME

FROM EMPLOYEE

WHERE DEPARTMENT_NUMBER 1IN
(SELECT DEPARTMENT_NUMBER
FROM DEPARTMENT
WHERE LOCATION='DENVER')

NESTED
QUERY

m A query may appear as an
operand of a predicate of
the form “expression
operator query”. Such a
query is called a Nested
Query or a Subquery.

m The optimizer will arrange
the subquery to be
evaluated at first.



Correlation Subquery

m Correlation Subquery: A subquery may
contain a reference to a value obtained
from a candidate tuple of a higher level
query block

m A correlation subquery must in principle
be re-evaluated for each candidate tuple
from the referenced query block.

the query:
SELECT NAME
FROM ENPLOYEE X
WHERE SALARY > (SELECT SALARY
FROM EMPLOYEE
WHERE EMPLOYEE_NUMBERe
5 MANAGER)



CONCLUSION




conclusion

m Describing the access path selection methods in system R
- Single paths
- Forjoins
m Nested loop join method
m Merging scan method
m How to calculate the cost of each type of paths?
— COST = PAGE FETCHES + W * (RSI CALLS)

m Nested Queries
- Evaluate the lowest level to top level







