
ACCESS PATH SELECTION IN A
RELATIONAL DATABASE
MANAGEMENT SYSTEM

Presenter: Jill Zhou

Overview

■ Main topic: How system R chooses Access paths for queries?
– System R:
■ Build by IBM
■ First implementation of SQL

– Queries:
■ Simple (single relation)
■ Complex (like joins)

– Principle to choose Access paths: minimizes total cost

PROCESSING OF AN
SQL STATEMENT

Four Phases

Processing of an SQL
statement (four phases)
■ Parsing:

– Accept a SQL query
– check for correct syntax

■ Optimization:
– Catalog lookup:

■ Verify the existence of names of tables and columns in
system R catalogs

■ retrieve information
■ Statistics of the referred relations

– E.g.: datatype and length of each column
■ Check available access paths

– Check for semantic error
– Access path selection (execution plan)

Given SQL
QUERY

Parsing

Optimization

Code
Generation

Execution

No syntax error

Execution plan

Machine language

Processing of an SQL
statement (four phases)
■ Code generation

– Translates execution plan into machine
language

– check for correct syntax

■ Execution
– Call the System R internal Storage System
(RSS) to scan the storage location

Given SQL
QUERY

Parsing

Optimization

Code
Generation

Execution

No syntax error

Execution plan

Machine language

THE RESEARCH
STORAGE SYSTEM (RSS)

The Research Storage System (RSS):
A brief introduction

■ The RSS responsible for maintaining physical storage of:
– Relations
– Access paths on these relations
– Locking
– Logging
– Recovery facilities

■ RSS structure:
– Tuples composed relations
– Relations stored in pages
– Pages are organized into segments

segments

page

relation

The Research Storage System (RSS):
accessing tuples

■ RSS scan: A scan returns a tuple at a time along a given access path.

■ Two Types of scan:
– Segment Scan: find all tuples of a given relation
■ All none empty pages in a segment will be touched for one time

– Index Scan:
■ Index may be created by a system R on one or more columns relation
■ Stored in separate pages (not the pages containing the relations)
■ During the scan, Index page will be touched only once, but data pages may be

touched more than once.

ACCESS PATHS

Cost for single relation access paths

■ COST = PAGE FETCHES + W * (RSI CALLS)
– PAGE FETCHES: Weighted measure of I/O and CPU utilizations
– W: an adjustable weighting factor between I/O and CPU
– RSI CALLS: predicted number of tuple return from the RSS

■ Minimum cost path: a path need minimum resources (such as minimum number of
tuples)

Access path selection for joins

■ Nested loops method
– E.g.: SQL: r join s
■ r is called the outer relation
■ s is called the inner relation
■ For each tuple in the outer relation:

– Scan for the tuple satisfied the join condition in the inner relation

■ Merging scan method
– Require the outer and inner relations to be scanned in join column order
– Only applied to equi-joins
■ E.g. table1.column1 = table2.column2

Access path selection for joins
■ M-way joins:

– A sequence of 2-way joins
■ Join the first two relations, and use the result to join the third, and so on.

– E.g. ((A JOIN B) JOIN C)
– Nested loops joins and merge scan joins may be mixed
– The cost of joining in different orders can be substantially different
■ E.g. different orders may apply different join methods.

– A heuristic method to reduce the join order
■ Only consider the join order which have join predicates relating the inner relation to

the other relations already participating in the join
■ E.g. given T1.col1 = T2.col2, and T2.col2 = T3.col3

– There are no following permutations: T1-T3-T2 & T3-T1-T2

Computation of costs for joins

■ The costs for joins are computed from the costs of the scans on each of the relations and the
cardinalities

■ Nested loop join cost:
– C-nested-loop-join(path1, path2) = C-outer(path1) + N * C-inner(path2)

■ Merge scan join cost:
– C-merge(path1, path2) = C-outer(path1) + N * C-inner(path2)

■ Meaning of symbols:
– C-outer(path1): cost of scanning the outer relation via path 1
– C-inner(path2): cost of scanning the inner relations via path 2, applying all applicable

predicates
– N: be the cardinality of the outer relation tuples, which satisfy the applicable predicates.

A EXAMPLE

A walk through of an example
of searching cheapest path

■ On EMP table: assume the index on job is the
cheapest path.

– Segment scan is pruned

■ On DEPT table: We assume the index on DNO is
cheaper

– Segment scan is pruned

■ On JOB table: Segment scan is cheaper
– Kept both

CREATE SEARCH TREE FOR SINGLE RELATIONS

Joining second relation
to the single relations
■ For (EMP, JOB) join, we

assume that is cheapest by
accessing Job on the job
index.

■ For (EMP, DEPT) join, we
assume that the DNO
relation is cheaper

Joining second
relation to the single
relations
■ In DEPT table, the cheapest

scan is in DNO order.

■ In EMP table, the job index is
the cheapest access path.

NESTED QUERIES

NESTED
QUERY
■ A query may appear as an

operand of a predicate of
the form “expression
operator query”. Such a
query is called a Nested
Query or a Subquery.

■ The optimizer will arrange
the subquery to be
evaluated at first.

Correlation Subquery

■ Correlation Subquery: A subquery may
contain a reference to a value obtained
from a candidate tuple of a higher level
query block

■ A correlation subquery must in principle
be re-evaluated for each candidate tuple
from the referenced query block.

CONCLUSION

conclusion

■ Describing the access path selection methods in system R
– Single paths
– For joins
■ Nested loop join method
■ Merging scan method

■ How to calculate the cost of each type of paths?
– COST = PAGE FETCHES + W * (RSI CALLS)

■ Nested Queries
– Evaluate the lowest level to top level

Q & A

