
The Design of Postgres
Ruijia Mao

The Design of Postgres

•History

•Process Structure

•Design Goals & Implementation

•Comments

History

History
• INGRES

• Implemented during 1975 - 1977

• POSTGRES - POST inGRES

• POSTGRES uses POSTQUEL as its
query language

• PostgreSQL

Process Structure

Process Structure

POSTMASTER Demon
Processes

POSTGRES
Run-time
System

User
Program

Design Goals &
Implementation

Design Goals
1. Provide better support for complex

objects

2. Provide user extendibility for data types,
operators and access methods

3. Provide facilities for active database (i.e.
alerts and triggers) and inferencing
including forward- and backward-
chaining

Design Goals

4. Simplify the DBMS code for crash
recovery

5. Produce a design that can take
advantage of optical disks

6. Make as few changes as possible
to the relational model

Complex Objects

Complex objects

•Can be represented by a field of type
POSTQUEL

Complex objects: Example

•Polygon (id, other_fields)

• Line (id, other_fields)

• create OBJECT(name=char[10],
obj=postquel)

Complex objects: Example
Name Obj

Apple retrieve (POLYGON all) where
POLYGON.id = 10

Orange
retrieve (LINE all) where LINE.id =

17

retrieve (POLYGON all) where

POLYGON.id = 11

Complex objects:
Support for Procedural Data

•Precomputation

Complex objects:
Precomputation

•Compiling an access plan for
POSTQUEL commands

• Executing the access path to
produce an answer

Complex objects:
Compilation and Fast-path
•A demon process will compile

queries in idle time

• The time to parse and optimize the
query is avoided

• The fast-path can accept binary form
arguments and run even faster

Complex objects: Invalidate

•Use I-lock to support invalidation of
plans and answers

R W I

R Ok No Ok

W No No *

I Ok No Ok

Complex objects: Invalidate

User-defined Types

User-defined Types

• Existing access methods must be
usable for user-defined data types

•New access method must be
definable

User-defined Types:
example

•B-tree

• { <, =, >, >=, <=}

Alerts, Triggers and
Inference

Alerts, Triggers and
Inference

• T-lock is used to support alerts and
triggers

•D-lock is used to support inference

Alerts and Triggers:
example

• create EMP(name=char[20],
mgr=char[20])

• retrieve always (EMP all) where
EMP.name=“Bill”

R W I T

R Ok No Ok Ok

W No No * #

I Ok No Ok Ok

T Ok No Ok Ok

Alerts and Triggers:
compatibility matrix

Inference

Inference: example

• The employees need to work 8 hours
a day.

• The salary for new employees are
$14 per hour.

R W I T D
R Ok No Ok Ok &
W No No * # No
I Ok No Ok Ok Ok
T Ok No Ok Ok Ok
D Ok No * # Ok

Alerts and Triggers:
compatibility matrix

Crash Recovery

Crash Recovery

• Force: When a transaction commits,
it is pushed to the disk

•Steal

•When a crash is observed, abort all
active transactions

Comments

Comments

• This paper adds supports for user-defined
types, alerting and triggers, and other things.

• The POSTGRES database evolves to one of
the leading open-source relational databases

• The process structure is relatively simple.
Modern PostgreSQL uses client-server
model.

Q&A

Thanks

