CMPT 843 Paper Presentation January 24th 2019

A History and Evaluation of System R

Presented by Ankita Sakhuja

Let's time travel to 1970

• What was the state of Database Systems then?

The leading commercial database of it's time was a hierarchical one: IBM's IMS

Data was linked in a tree-like structure. It's still a success today	
Laborious to maintain relationships between data	×
Locations of data had to be known	X
Physical Links had to be maintained and making changes to the database were daunting	X
Queries were crude	X

Relational Model by Dr. Ted Codd

Relational Model

Activity Code	Activity Name	\
23	Patching	\
24	Overlay	
25	Crack Sealing	

٦				
Activity Code		Date	Route No.	
	24	01/12/01	I-95	
	24	02/08/01	I-66	

•	Codd's approach was rather different, favoring	
	a declarative model.	

 This meant the programmer "declared" relationships and the computer would be expected to implement them in bits and bytes.

Date	Activity Code	Route No.
01/12/01	24	I-95
01/15/01	23	I-495
02/08/01	24	I-66

How IBM cracked System R

In 1973 Big Blue decided to do something about this, and consolidated its database research in San Jose, California.

IBM gave its research staff beautiful buildings in serene locations - San Jose

Codd had joined IBM's research labs in 1970, and the move brought him into contact to some clever engineers.

About this Research Paper

Key points

1. Three Principal phases of the system R project

2. Lessons learned from system R about design of database systems in general 3. Our Views regarding contributions of System R to the present era Relational DB system

SYSTEM R CASE STUDY IN A NUTSHELL

System Modules Identified

- Log/Recovery System
- Lock Manager
- Data Storage
- View Management
- Access Methods
- Query Optimizer

→ Basic Design Decisions

- System Catalog
- XRM as Access method

> Challenges

Optimizer Algorithm

> Result

Usability of SQL

Lessons Learned

- Optimizer Cost calculation
- Need of "Join" in SQL
- How can the complexity of Optimizer by reduced

End of Phase 0 (1974 - 1975)

Functionality	Phase 0
Access Method	XRM
Concurrency	Single User
Lock Method	N/A
Recovery	N/A
Query Complexity	Supports Subquery but not "Join"
Interactive level	Standalone Query Interface
Security	N/A
Compilation Approach	N/A

- > Architecture : RSS, RDS
- Designed to support multiple concurrent users
- ➤ Locking sub-system
- ➤ Authorization sub-system
- ➤ Recovery Sub-system
- ➤ Compilation Approach

Compilation Approach

Inspired by R. Lorie's observation in early 1976

- SQL statements are compiled into efficient machine language routines and further packed into access module
- When program goes into execution, access module is invoked to the RSS

> RSS Access Paths

- RSS provides indexes.
- Indexes are maintained automatically in the event of updates to the database.
- RSS access path includes three different kind of scans :
- ☐ Index Scans
- ☐ Relation Scans
- ☐ Link Scans
- "Search Arguments"

Important Sub-systems which were introduced

End of Phase 1 (1976 – 1977)

Functionality	Phase 0	Phase 1
Access Method	XRM	RSS,RDS
Concurrency	Single User	Multiple User
Lock Method	N/A	Intention Locks, Exclusive Locks
Recovery	N/A	w.r.t. Disk, System, Transaction failures
Query Complexity	Supports Subquery but not "Join"	Joins were introduced
Host- Capability	Standalone Query Interface	Supported PL/I , Cobol, Standalone QI (Called UFI)
Security	N/A	Views were introduced
Compilation Approach	N/A	Yes

Evaluation Period (1978-1981)

- Evaluation phase consisted of two parts :
- 1. Experiments performed on the system in the Lab
- Use of R system on IBM's several internal sites and at 3 selected customer sites.
- General User Comments :
- 1. Easy installation
- 2. High level user language
- 3. Ability to reconfigure the DB
- 4. SQL was identified to be simple, user-friendly and data independent.
- 5. SQL code was platform independent (w.r.t. adhoc query, application programs)
- Compilation approach was applauded for it's approach to make the compilation easy

Suggestions

- Need of functions like "Exists", "Like" operators. Which we currently hold now in RDBMS systems
- Need for "Outer Joins". Exist with us now
- Authorization could be augmented to the group instead of users. Access is now provided to groups
- Creating new table out of existing table.
 We have functionality of %InsertSelect now
- Shadow pages concept introduced in Recovery sub-systems could have an alternative of simply keeping the logs of all the updates.

*These suggestions with SQL language were later presented as a paper published in 1980 as a user-experience with SQL data sublanguage

Conclusions

- Cost was defined as weighted sum of number of page fetches and RSS calls
- Each user could be provided a three-level lock system as part of Locking sub-system.

End of Phase 2 (1978 – 1980)

Functionality	Phase 0	Phase 1	Phase 2
Access Method	XRM	RSS,RDS	RSS,RDS
Concurrency	Single User	Multiple User	Multiple User
Lock Method	N/A	Intention Locks, Exclusive Locks	Three Level Locking
Recovery	N/A	w.r.t. Disk, System, Transaction failures	Shadow Page and Log Mechanism
Query Complexity	Supports Subquery but not "Join"	Joins were introduced	Subqueries, Joins, Outer Join need was proposed
Host- Capability	Standalone Query Interface	Supported PL/I , Cobol, Standalone QI (Called UFI)	Supported PL/I , Cobol, Standalone QI (Called UFI)
Security	N/A	Views were introduced	Need of Groups was proposed
Compilation Approach	N/A	Introduced	Was a big hit in System R

Bringing Theory to practice

High Level Query Language was introduced

System Research in "Action"

Macro: Design a complete system architecture

Micro: Identify key problems and provide solutions

Contributions of System R- Our Views

Thankyou!