
Scalable SQL and
NoSQL Data Stores

Rick Cattell

Presenter: MoHan Zhang

What is NoSQL?

NoSQL
• Stand for: Not Only SQL / Not Relational

• Features:

• Ability to scale to many servers

• Efficient use of distributed indexes & RAM for data storage

• Dynamically add new attributes to data records (dynamic
schema)

• Weaker concurrency model than ACID transactions of
most relational databases

ACID vs BASE
• ACID: Atomicity, Consistency, Isolation, Durability

• BASE: Basically Available, Soft State, Eventually
Consistent

• Updates are eventually propagated, but
limited guarantee on read consistency

• Give up ACID constraints = Higher Performance
and Scalability

Key Property: Shared
Nothing Architecture

• Replicate and partition data over many servers

• support a large number of simple read/write
operations per second

The purpose of this paper is to survey a set
of scalable SQL and NoSQL database

models under the following 4 categories:

• Key-value Stores

• Document Stores

• Extensible Record Stores

• Relational Databases

• Key-value Stores

• Document Stores

• Extensible Record Stores

• Relational Databases

Key-value Stores

• Systems under this category store values and an
index to find them, based on a programmer
defined key

• Insert, Delete, Lookup Operations

• Scalability through key distributions over nodes

Use Case:

• Simple application, one kind of object, only need
to look up on one attribute

Project Voldemort
• Written in Java, open-source, supported by Linkedin

• Multi-version Concurrency Control (MVCC) for
updates

• No guarantee of consistent data

• Optimistic Locking

• Consistent Hashing

• Store data in RAM or in storage engines

Riak
• Written in Erlang, open-source, client based on RESTful

• Objects can be fetched and stored in JSON

• can have multiple fields (like documents)

• Only lookup is on Primary Key

• MVCC & Consistent Hashing

• Map/Reduce to split work over nodes in a cluster

• Unique Feature: Store links between objects

Redis

• Written in C, Open-source

• Client side does the distributed hashing over
servers, servers store data in RAM

• Updates by locking

• Asynchronous Replication

Membase

• Based on distributed in-memory indexing
system, Memcache

• Open-source

• Elastically add / remove servers in a running
system

Other systems:

• Scalaris

• Tokyo Cabinet

Riak Redis Scalaris Tokyo
Cabinet Membase Voldemort

Data Store Ram or
disk Ram Ram Ram or

disk Ram Ram or
disk

Replicatio
n Async Async Sync Async Sync Async

Transactio
ns No No Yes Yes No No

Updates MVCC Locking Locking Locking Locking MVCC

• Key-value Stores

• Document Stores

• Extensible Record Stores

• Relational Databases

Document Stores

• Systems under this category store documents.
Documents are indexed and a query mechanism
is provided.

• Secondary indexes and multiple types of objects
per database

• No ACID Transactional Properties

Use Case:

• Multiple kinds of objects (e.g. Driver Licensing,
with vehicles and drivers), need to look up on
multiple attributes (driver_name,
license_number, owned_vehicle, birthday)

• Need to tolerate eventual consistency

SimpleDB
• Pay as you go service from Amazon

• Select, Delete, GetAttributes, PutAttributes

• Does not allow nested documents

• Eventual Consistency & Async replication

• More than one grouping in one database

• multiple indexes

• No automatic data partitioning over servers

MongoDB
• Written in C++, GPL Open-source

• Automatic sharing distributed documents over
many servers

• Replication used for failover, not for scalability

• Data stored in BSON format (binary JSON)

• Master-slave replication with automatic failover
and recovery

Other systems

• CouchDB

• Terrastore

• Key-value Stores

• Document Stores

• Extensible Record Stores

• Relational Databases

Extensible Record Stores

• Systems under this category store extensible
records that can be partitioned vertically and
horizontally across nodes

• Motivated by Google’s BigTable, but none
achieved the scalability of BigTable

Use Case:
• Multiple kinds of objects and need to look up on

multiple attributes, higher throughput than
Document Stores, stronger concurrency

• e.g. eBay application:

• cluster users by country

• Separate rarely changed customer information in
one place, and frequently updated information in
another place for improvements in performance

HBase
• Written in Java, Apache project

• Hadoop DFS, updates in memory and
periodically write to disk

• updates go to the end of data files

• B-trees allow fast range queries and sorting

• Optimistic Concurrency control

Hypertable

• Written in C++, Open-source, sponsored by
Baidu

• Similar to BigTable and HBase

• Uses query language named HQL

Cassandra

• Written in Java, Open-source, basic features
similar to HBase

• Used by Facebook and other companies

• Weaker Concurrency Model: No locking, Async
replica updates

• Key-value Stores

• Document Stores

• Extensible Record Stores

• Relational Databases

Scalable Relational
Databases

• Pre-defined Schema, SQL interface, ACID
transactions

• Penalize Large-scope operations, while NoSQL
systems forbid these operations

• Avoid cross-node operations to deliver
scalability

Use Case:

• Many tables across different kinds of data, need
for a centralized schema, need for simplicity of
SQL

• Database being updated from many locations

MySQL Cluster

• Shared nothing architecture: shards data over
multiple database servers

• In-memory & Disk-based data

• Can scale to more nodes than other RDBMSs
but runs into bottleneck after a few dozen nodes

VoltDB
• Open-source RDBMS, designed for scalability and

per-node performance

• Tables partitioned over many servers

• Shards replicated for crash recovery

• Designed for databases that fit into distributed RAM of
a server, so that the system never waits for the disk

• This and other optimizations boost single node
performance

Clustrix

• Nodes sold as rack-mounted appliances

• Scalability to hundreds of nodes, automatic
sharing & replication

• Automatic failover and failure recovery

• Seamlessly compatible with MySQL

Other systems

• ScaleDB

• ScaleBase

• NimbusDB

Conclusion

Some predictions from 2010
• Many developers are willing to abandon globally ACID

transactions in order to gain scalability, availability,
and other advantages

• The simplicity, flexibility, and scalability of NoSQL data
stores fill a niche market

• Many data models described today will not be
enterprise ready in a while

• One or two systems within each category will become
the leader

Relational > NoSQL?
• Relational can do everything NoSQL can, with

analogous performance and scalability, adding
in the convenience of SQL

• Relational DBMSs have been dominating the
market for more than 30 years

• Relational DBMSs have been built to deal with
other problems and they will have no problem
dealing with scalability

NoSQL > Relational?
• No benchmarks showing Relational can achieve the

scalability of some NoSQL systems

• In NoSQL: only pay the learning curve for the complexity
you require

• Relational DBMS makes expensive (multi-node, multi-
table) operations too accessible, NoSQL systems make
them impossible or visibly expensive to programmers

• While relational DBMSs have been successful, over the
years there have been other products occupying niche
markets

Thank you!

Q&A

