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MapReduce: A programming model and an associated

implementation for processing and generating large datasets
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Single Machine

Fail to deal with rapidly growing data in Storage & Computation

< Memory




Commodity Cluster

Switch




Storage: Google File System (GFS)

Split file into chunks
Chunk Server

Store chunks

Has duplication
Master server

Store meta data

File

Chunk |

Chunk 2 |:

Chunk 3 |




Computation: General Implementation

Defining computation
Partitioning input
Scheduling

Handling failures

Managing inter-machine communication



Computation

Defining computation < Interface

« Hide from user
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The MapReduce Programming Model

Input Map: <kl, vI> -> list(<k2, v2>) Output
Reduce: <k2, list(v2)> -> list(v2) 4
ist(<kl,vI>)— ( Map | [ Reduce | —| list(v2)

l T

list(<k2,v2>) | — |list(<k2, list(v2)>)




Example:Word Count

Splitting input: file -> list(<index, line>)

| Cat Dog
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Fish Dog |12 Fish Dog

Cat Cat \
3 Cat Cat




Example:Word Count

Map: <index, line> -> list(<w, |>)

Cat Dog
Fish Dog
Cat Cat

| Cat Dog

Cat |
Dog |

2 Fish Dog

Fish |
Dog |

3 Cat Cat

Cat |
Cat |
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Example:Word Count

Aggregate: list(<w, |>) -> list(<w, list(1)>)

Cat Dog
Fish Dog
Cat Cat

| Cat Dog

Cat |
Dog |

2 Fish Dog

Fish |
Dog |

Cat |
Cat |
Cat |

3 Cat Cat

Dog |
Dog |

Cat |
Cat |

Fish |
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Example:Word Count

Reduce: <w, list(1)> -> list(“w, n”

Cat Dog
Fish Dog
Cat Cat

| Cat Dog

Cat |
Dog |

2 Fish Dog

Fish |
Dog |

Cat |
Cat |
Cat |

Cat 3

3 Cat Cat

Dog |
Dog |

Dog 2

Cat |
Cat |

Fish |

Fish |
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Parallel Computing

Input

A 4

list(<kl, v1>)
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Map: <kl, vI> -> list(<k2, v2>)

Reduce: <k2, list(v2)> -> list(v2)

Output
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Generalization Capability

Build Inverted Index for Search Engine

Map: <doc ID, content> -> list(<word, doc |ID>)

Reduce: <word, list(doc ID)> -> list(“word+list(doc ID)”)
Count URL Access Frequency
Grep from distributed file system

Sort data on distributed file system
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Execution: Overview
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Map Intermediate files Reduce Output
phase (on local disks) phase files
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Execution: Overview

Split input into M pieces
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Execution: Overview

Start on cluster User
Program
Master (1) fork .- (l)fo:rk .'(l,)'fork
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Execution: Overview

User
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Execution: Overview

Map Worker

Invoke Map Function . (2)
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Execution: Overview
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Execution: Overview

Reduce Worker
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Execution: Overview
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Execution: Overview

Reduce Worker

Write & Rename
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Master

Schedule

Task status: idle, in-progress, completed & worker machine (for
non-idle tasks)

Worker status: ping periodically
Communicate

Location and size of intermediate results
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Fault Tolerance

Worker

Completed and in-progress map tasks at this worker are reset to
idle

Only the in-progress reduce task is reset to idle
Master

Start a new copy by checkpoints / Abort
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Task Granularity

Split input into M pieces -> M map tasks
Divide intermediate result into R pieces -> R reduce tasks

M & R should be much larger than the number of machines

Dynamic load balancing

Speed up recovery

2000 machines: M=200,000, R=5000
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Speed Up: Network Bandwidth

Locality
Master assign a map task to a worker machine that
Contains a replica of the input data
Near a replica of the input data
Combiner Function

Merge intermediate result before sent through network
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Combiner Function in Word Count

Cat |
Dog |

MI

Fish |
Dog |

Cat |
Cat |
Cat |

RI

M2

Dog |
Dog |

Cat |
Cat |

R2

>

Cat |
Dog |

Ml

Cat |
Cat 2

Fish |
Dog |

RI

M2

Dog |
Dog |

Fish |

M3

R3

Cat |
Cat |

Cat 2

R2

Fish |

M3

M3

R3

32




Speed Up: Backup Tasks

Issue: straggler
A machine that takes unusually long time to complete one task

Solution: backup tasks

Schedule backup executions for in-progress tasks when the
MapReduce operation is close to completion
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Other Details

Customization

Partitioning Function, Input & Output Types
Debug & Monitor

Local Execution, Status Information, Counters...

Skipping Bad Records
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TakeAways

MapReduce is a general programming model that it can be
used in various application scenarios

MapReduce hides the detail implementation from users and
provide simple & flexible interfaces

The implementation of MapReduce is efficient and highly
scalable
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Q &A
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