MapReduce: Simplified Data Processing on
Large Clusters

Jeff Dean and Sanjay Ghemawat, Google, Inc.

Presenter: Xiaoying Wang

MapReduce: A programming model and an associated

implementation for processing and generating large datasets

Background
Programming Model Definition

Implementation & Refinement

Background
Programming Model Definition

Implementation & Refinement

Single Machine

Fail to deal with rapidly growing data in Storage & Computation

< Memory

Commodity Cluster

Switch

Storage: Google File System (GFS)

Split file into chunks
Chunk Server

Store chunks

Has duplication
Master server

Store meta data

File

Chunk |

Chunk 2 |:

Chunk 3 |

Computation: General Implementation

Defining computation
Partitioning input
Scheduling

Handling failures

Managing inter-machine communication

Computation

Defining computation < Interface

« Hide from user

Background
Programming Model Definition

Implementation & Refinement

|0

The MapReduce Programming Model

Input Map: <kl, vI> -> list(<k2, v2>) Output
Reduce: <k2, list(v2)> -> list(v2) 4
ist(<kl,vI>)— (Map | [Reduce | —| list(v2)

l T

list(<k2,v2>) | — |list(<k2, list(v2)>)

Example:Word Count

Splitting input: file -> list(<index, line>)

| Cat Dog

Cat DOg /
Fish Dog |12 Fish Dog

Cat Cat \
3 Cat Cat

Example:Word Count

Map: <index, line> -> list(<w, |>)

Cat Dog
Fish Dog
Cat Cat

| Cat Dog

Cat |
Dog |

2 Fish Dog

Fish |
Dog |

3 Cat Cat

Cat |
Cat |

|3

Example:Word Count

Aggregate: list(<w, |>) -> list(<w, list(1)>)

Cat Dog
Fish Dog
Cat Cat

| Cat Dog

Cat |
Dog |

2 Fish Dog

Fish |
Dog |

Cat |
Cat |
Cat |

3 Cat Cat

Dog |
Dog |

Cat |
Cat |

Fish |

| 4

Example:Word Count

Reduce: <w, list(1)> -> list(“w, n”

Cat Dog
Fish Dog
Cat Cat

| Cat Dog

Cat |
Dog |

2 Fish Dog

Fish |
Dog |

Cat |
Cat |
Cat |

Cat 3

3 Cat Cat

Dog |
Dog |

Dog 2

Cat |
Cat |

Fish |

Fish |

|5

Parallel Computing

Input

A 4

list(<kl, v1>)

=M —
e)

Map: <kl, vI> -> list(<k2, v2>)

Reduce: <k2, list(v2)> -> list(v2)

Output

>

list(v2)

([Reduce\j_—“[
I

|

[

¥

| _>..| list(<k2, |i5t(V2)>)l

list(<k2,v2>)

|6

Generalization Capability

Build Inverted Index for Search Engine

Map: <doc ID, content> -> list(<word, doc |ID>)

Reduce: <word, list(doc ID)> -> list(“word+list(doc ID)”)
Count URL Access Frequency
Grep from distributed file system

Sort data on distributed file system

|7

Background
Programming Model Definition

Implementation & Refinement

|18

Execution: Overview

split O

split 1

split 2

split 3

split 4

Input
files

(3) read K (4) local write .
worker output

User
Program
1) fork ." . "
(ork (1) fork ¢1) fork
, -2
Q) assign
_assign reduce .
" map

worker

(6) write output

file 0

(5) remote read

file 1

worker

Map Intermediate files Reduce Output
phase (on local disks) phase files

19

Execution: Overview

Split input into M pieces

split O

split 1

split 2

3

split 3

split 4

Input
files

worker

User
Program
1) fork ." . "
(Dfore (1) fork (1) fork
_ (2)
2. assign
_assign reduce .
" map

(5) remote read

(4) local write

worker

) read

Map
phase

>

Intermediate files
(on local disks)

(6) write

output
file O

output
file 1

Reduce
phase

Output

files

20

Execution: Overview

Start on cluster User
Program
Master (1) fork .- (l)fo:rk .'(l,)'fork
Worker:Map & Reduce: | .. @
R _assign reduce .
: map

worker

split O

split 1

(6) write output
>

split 4

worker

Split 2 M (4) local write
worker > output
split 3 P
file 1

Input Map Intermediate files Reduce Output
files phase (on local disks) phase files

Execution: Overview

User
Program

Map Worker Dok o

Read & Parse . (2)

2 assign
_assign reduce .

map

worker

split O

(6) write

. output
split 1 file O

(5) remote read

file 1

split 4

worker

split 2 (3) read K 4) local write o
WOTIKETr
split 3 output

Input Map Intermediate files Reduce Output
files phase (on local disks) phase files

Execution: Overview

Map Worker

Invoke Map Function . (2)

split O

split 1

split 2

O

split 3

split 4

Input
files

ad

User
Program

1) fork ." - »
() or . (l)fork (l)fork

Q). assign
. as'sign redube .
map

(5) remote read

4) local write

worker

Map
phase

>

Intermediate files
(on local disks)

Reduce
phase

(6) write

output
file O

output
file 1

Output
files

23

Execution: Overview

User
Program

Map Worker (1) fork

() fark €D fork

Partition & Write

Q). assign
_.assign reduce .
map

worker

split O

split 1 (5) remot¢ read

pht 2 MO () local write | —
worker >
split 3

split 4

worker

Intermediate files
(on local disks)

Input Map
files phase

worker

Reduce
phase

(6) write output

file 0

output
file 1

Output
files

24

Execution: Overview

Reduce Worker

Read & Sort

User
Program
1) fork ." . "
(ork (1) fork ¢1) fork
,. (2)
2)- : aSSTETT
_afsign reduce .
" fnap

(4) local write
>

split O
split 1
split2 [(3)read
worker
split 3
split 4
Input Map
files phase

Intermediate files
(on local disks)

(5) remote read

Reduce
phase

(6) write
L >

output
file O

output
file 1

Output
files

25

Execution: Overview

User
Program
Reduce Worker .
(1) fork .- . "L
(1) fork 1) fork
Invoke Reduce Function :
i . S)
J Q) assign
_assign reduce .
" map
split O
5P lit 1 (5) remote read
split 2 MLO (4) local write /
worker >
split 3
split 4
Input Map Intermediate files
files phase (on local disks)

worker

Reduce
phase

(6) write

output
—

file 0

output
file 1

Output
files

26

Execution: Overview

Reduce Worker

Write & Rename

User
Program
1) fork .* - "
terk (1) fork (1) fork
. @)
Q) assign
_assign reduce .
" map

(5) remote read

(4) local write /

>

split O
split 1
split2 [(3)read
worker
split 3
split 4
Input Map
files phase

Intermediate files
(on local disks)

(6) write output
worker file 0

@ output
file 1

Reduce Output
phase files

27

Master

Schedule

Task status: idle, in-progress, completed & worker machine (for
non-idle tasks)

Worker status: ping periodically
Communicate

Location and size of intermediate results

28

Fault Tolerance

Worker

Completed and in-progress map tasks at this worker are reset to
idle

Only the in-progress reduce task is reset to idle
Master

Start a new copy by checkpoints / Abort

29

Task Granularity

Split input into M pieces -> M map tasks
Divide intermediate result into R pieces -> R reduce tasks

M & R should be much larger than the number of machines

Dynamic load balancing

Speed up recovery

2000 machines: M=200,000, R=5000

30

Speed Up: Network Bandwidth

Locality
Master assign a map task to a worker machine that
Contains a replica of the input data
Near a replica of the input data
Combiner Function

Merge intermediate result before sent through network

31

Combiner Function in Word Count

Cat |
Dog |

MI

Fish |
Dog |

Cat |
Cat |
Cat |

RI

M2

Dog |
Dog |

Cat |
Cat |

R2

>

Cat |
Dog |

Ml

Cat |
Cat 2

Fish |
Dog |

RI

M2

Dog |
Dog |

Fish |

M3

R3

Cat |
Cat |

Cat 2

R2

Fish |

M3

M3

R3

32

Speed Up: Backup Tasks

Issue: straggler
A machine that takes unusually long time to complete one task

Solution: backup tasks

Schedule backup executions for in-progress tasks when the
MapReduce operation is close to completion

33

Other Details

Customization

Partitioning Function, Input & Output Types
Debug & Monitor

Local Execution, Status Information, Counters...

Skipping Bad Records

34

TakeAways

MapReduce is a general programming model that it can be
used in various application scenarios

MapReduce hides the detail implementation from users and
provide simple & flexible interfaces

The implementation of MapReduce is efficient and highly
scalable

35

Q &A

36

