
MapReduce: Simplified Data Processing on 
Large Clusters

Jeff Dean and Sanjay Ghemawat, Google, Inc.

Presenter: Xiaoying Wang



MapReduce: A programming model and an associated 
implementation for processing and generating large datasets

 2



Background

Programming Model Definition

Implementation & Refinement

 3



Background

Programming Model Definition

Implementation & Refinement

 4



Single Machine

CPU

Memory

Disk

Fail to deal with rapidly growing data in Storage & Computation

 5



Commodity Cluster

 6

Switch Switch Switch

Switch



Storage: Google File System (GFS)

Split file into chunks

Chunk Server

Store chunks

Has duplication

Master server

Store meta data

 7

Chunk 1

Chunk 2

Chunk 3

File



Computation: General Implementation

Defining computation

Partitioning input

Scheduling

Handling failures

Managing inter-machine communication

…
 8



Computation

Defining computation

Partitioning input

Scheduling

Handling failures

Managing inter-machine communication

…
 9

Interface

Hide from user



Background

Programming Model Definition

Implementation & Refinement

 10



The MapReduce Programming Model

Input Output

Map Reducelist(<k1, v1>)

list(<k2, v2>) list(<k2, list(v2)>)

list(v2)

Map: <k1, v1> -> list(<k2, v2>)

Reduce: <k2, list(v2)> -> list(v2)

 11



Example: Word Count

1 Cat Dog
Cat Dog 
Fish Dog 
Cat Cat 

2 Fish Dog

3 Cat Cat

Splitting input: file -> list(<index, line>)

 12



Example: Word Count

Cat Dog 
Fish Dog 
Cat Cat 

Cat 1
Dog 1

Fish 1
Dog 1

Cat 1
Cat 1

Map: <index, line> -> list(<w, 1>)

 13

1 Cat Dog

2 Fish Dog

3 Cat Cat



Example: Word Count

Cat Dog 
Fish Dog 
Cat Cat 

Cat 1
Dog 1

Fish 1
Dog 1

Cat 1
Cat 1

Cat 1
Cat 1
Cat 1

Dog 1
Dog 1

Fish 1
 14

Aggregate: list(<w, 1>) -> list(<w, list(1)>)

1 Cat Dog

2 Fish Dog

3 Cat Cat



Example: Word Count

Cat Dog 
Fish Dog 
Cat Cat 

Cat 3

Dog 2

Fish 1

Reduce: <w, list(1)> -> list(“w, n”)

 15

Cat 1
Dog 1

Fish 1
Dog 1

Cat 1
Cat 1

Cat 1
Cat 1
Cat 1

Dog 1
Dog 1

Fish 1

1 Cat Dog

2 Fish Dog

3 Cat Cat



 16

Input Output

Map Reduce

list(<k1, v1>) list(<k1, list(v1)>)

list(<k1, v2>)MapMap

list(<k1, v1>)list(<k2, v2>) list(<k2, list(v2)>)

Reduce list(v2)

Parallel Computing

Map: <k1, v1> -> list(<k2, v2>)

Reduce: <k2, list(v2)> -> list(v2)

list(<k1, v1>)list(<k1, v1>)list(<k1, v1>)



Generalization Capability

Build Inverted Index for Search Engine

Map: <doc ID, content> -> list(<word, doc ID>)

Reduce: <word, list(doc ID)> -> list(“word+list(doc ID)”)

Count URL Access Frequency

Grep from distributed file system

Sort data on distributed file system

…
 17



Background

Programming Model Definition

Implementation & Refinement

 18



Execution: Overview

 19



Execution: Overview

Split input into M pieces

 20



Execution: Overview

Start on cluster

Master

Worker: Map & Reduce

 21



Execution: Overview

Map Worker

Read & Parse

 22



Execution: Overview

Map Worker

Invoke Map Function

 23



Execution: Overview

Map Worker

Partition & Write

 24



Execution: Overview

Reduce Worker

Read & Sort

 25



Execution: Overview

Reduce Worker

Invoke Reduce Function

 26



Execution: Overview

Reduce Worker

Write & Rename

 27



Master

Schedule

Task status: idle, in-progress, completed & worker machine (for 
non-idle tasks)

Worker status: ping periodically

Communicate

Location and size of intermediate results

 28



Fault Tolerance

Worker

Completed and in-progress map tasks at this worker are reset to 
idle

Only the in-progress reduce task is reset to idle

Master

Start a new copy by checkpoints / Abort

 29



Task Granularity

Split input into M pieces -> M map tasks

Divide intermediate result into R pieces -> R reduce tasks

M & R should be much larger than the number of machines

Dynamic load balancing

Speed up recovery

2000 machines: M=200,000, R=5000

 30



Speed Up: Network Bandwidth

Locality

Master assign a map task to a worker machine that

Contains a replica of the input data

Near a replica of the input data

Combiner Function

Merge intermediate result before sent through network

 31



Combiner Function in Word Count

 32

Cat 2

Cat 1
Cat 2

Cat 1
Dog 1

Fish 1
Dog 1

Cat 1
Cat 1

Cat 1
Cat 1
Cat 1

Dog 1
Dog 1

Fish 1

Cat 1
Dog 1

Fish 1
Dog 1

Cat 1
Cat 1

Dog 1
Dog 1

Fish 1

M1

R1

M2

M3

R2

R3

M1

M2

M3

R1

R2

R3M3



Speed Up: Backup Tasks

Issue: straggler

A machine that takes unusually long time to complete one task

Solution: backup tasks

Schedule backup executions for in-progress tasks when the 
MapReduce operation is close to completion

 33



Other Details

Customization

Partitioning Function, Input & Output Types

Debug & Monitor

Local Execution, Status Information, Counters…

Skipping Bad Records

…

 34



TakeAways

MapReduce is a general programming model that it can be 
used in various application scenarios

MapReduce hides the detail implementation from users and 
provide simple & flexible interfaces

The implementation of MapReduce is efficient and highly 
scalable

 35



Q & A

 36


