
Eddies: Continuously

Adaptive Query Processing

Speaker: Ohoud Alharbi

Goals of Presentation
◎ Consideration for run-time optimization:

○ Synchronization barriers.
○ Moments of Symmetry.

◎ What is Eddies?
◎ Routing Tuples in Eddies:

○ Naïve scheme
○ Lottery scheme

◎ Experiments to evaluate routing schemes

Steps for a typical Query Processor

o Express query as algebra expression (set of
operators).

o Enumerate alternative plans.
o For each alternative plan, estimate the cost of

each enumerated plan.
o Choose the plan with the least estimate cost.

Constantly Fluctuating Environment

◎ Large scale system that functions an
unpredictable and constantly fluctuating
environment.

◎ We need query execution plans to be
reoptimized regularly during the course of
query processing.

◎ Allow system to adapt dynamically to
fluctuation in computing resources, data
characteristics and user preference.

Run-time reoptimization should consider:

○ Synchronization barriers: Where one operation
hinders the speed of another operations

○ Moments of Symmetry: when the query is
executed to a point that the optimizer can
change the query plan without affecting the way
the query plans predicates are performed

Constantly Fluctuating Environment

Synchronization Barriers
n Assume you have a merge join on

two inputs. (slowlo and fasthi)

n The processing of fasthi is
postponed for a long time while
consuming many tuples from
slowlow.

n Synchronization barriers limit
concurrency.

n Desirable to minimize the number of
Synchronization barriers.

slo
wl

ow

fasthi

Moments of Symmetry

◎ You can only re-optimize at a moment of symmetry.
◎ A moment of symmetry is when the query is executed to a point

that the optimizer can change the query plan without affecting
the way the query plans predicates are performed

Example
◎ Assume you have a nested loop join with inner relation R and

outer relation S.
◎ In this example you can only re-optimize this join when R is

completely scanned.

What is Eddies?

◎ Eddies was designed to dynamically re-
optimize queries.

◎ Eddies implemented in a River.
◎ A River is a shared nothing parallel query

processing framework that dynamically
adapts to fluctuations and workloads.

Eddies

◎ An eddy is implemented via a module in a
river containing an arbitrary number of input
relations, a number of binary modules, and
a single output relation.

◎ Although eddies will reorder tables among
joins, a heuristic pre-optimizer must choose
how to initially pair off relations into joins.

Eddies

Eddies
n Continuously reorders the application of

pipelined operators in a query plan, on a
tuple-by-tuple basis.

n Data flows into the eddy from input relations
R, S and T

n The eddy routes tuples to operators: the
operators run as independent threads,
returning tuples to the eddy

n The eddy sends a tuple to the output only
when it has been handled by all the
operators

n The eddy adaptively chooses an order to
route each tuples through the operators

◎ An Eddy also maintains a fixed size buffer of tuples that
need to be processed.

◎ Each operator takes two tuples, processes them and
delivers them back to the eddy.

◎ Each tuple entering eddy has a tuple descriptor.
◎ A tuple descriptor contains a vector of Ready bits and

Done bits.

◎ The Eddy ships the tuple to only the operators that have
the Ready bits turned on.

Eddies

◎ After an operators is processed it’s done bits
are set

◎ If all done bits are set the tuple is sent to the
Eddy’s output

◎ Eddies preserves the ordering constraints
while maximizing opportunities for tuples to
follow different possible ordering of the
operators.

Eddies

ready bit i :
1 : operator i can be applied
0 : operator i can’t be applied

ready done
111 000

Operator 2

Operator 3

EddyR

result

A

Operator 1

NLJ

B

NLJ

C

NLJ

Eddies Example

ready bit i :
1 : operator i can be applied
0 : operator i can’t be applied

ready done
000 111

Operator 2

Operator 3

EddyR

result

A

Operator 1

NLJ

B

NLJ

C

NLJ

Eddies Example

So how do Eddies route tuples to the different
operators?
We will look at multiple different ways

Eddies

Routing Tuples in Eddies

Routing Tuples in Eddies

An eddy’s tuple buffer is implemented as a priority
queue with a flexible prioritization scheme.

Naïve Scheme

◎ Eddies buffer is implemented as a priority queue

◎ When a tuple enters a buffer it’s priority is set to low

◎ After it’s processed by an operator in the Eddy and

returned to the buffer it’s priority is set to high

◎ This ensures that tuples do not get stuck in the Eddy.

I.e. starvation

Naïve Scheme

◎ This scheme dynamically adjusts.

◎ Operators that are slower (i.e. take 4 seconds vs. 1

second will receive less tuples)

◎ Note each operator has a fixed size queue.

◎ Once queue is filled up no more tuples can be

inserted into queue.

Lottery Scheme

◎ Need a learning algorithm to track both consumption and

production over time

◎ Each time a tuple is routed to a operator the operator is credited

with a ticket.

◎ When the operator returns a tuple one ticket is debited.

◎ Operator must use possessed tickets to win “lottery” to get new

tuples.

◎ Tracks how efficiently a operator drains tuples from the system.

Lottery Scheme

◎ Only the operators that have their Ready bit sets can

participate in the lottery

◎ An operator’s chance of “winning the lottery” and

receiving the tuple corresponds to the count of tickets for

that operator.

◎ Dynamically adjusts to selectivity of operators (as well as

cost).

◎ Therefore more “efficient” operator -> more tickets -> more

likely to win lottery -> more likely to get tuples

Lottery with Window Scheme

◎ Problem with lottery: An operator that gained a

lot of ticket initially but then became slow.

◎ In this scheme the lottery scheme is modified such

that the lottery only looks at tickets gained by an

operator in a fixed window.

Lottery with Window Scheme

Keeps track of two types of tickets:

Ø Banked tickets: Used when running the lottery.

Ø Escrow tickets: Used to measure efficiency during

the window.
At the end of a window:

Banked Tickets = Escrow Tickets
Escrow Tickets = 0

Ensure operators re-approve themselves each window

Routing Scheme Comparison

Experiment 1: One Table Query

◎ The query above run multiple times, always setting
the cost of s2 = 5 delay units, and

◎ In each run they used a different cost for s1 , varying it
between 1 and 9 delay units across runs.

◎ The selectivities of both selections to 50%.

Comparison by Cost

◎ The Naïve approach naturally adjusts based on the cost of operators.

◎ Shows that Lottery also adjusts based on the cost of operators.

Comparison by Selectivity

◎ Naïve eddies does not adjust based on selectivity.

◎ Lottery does adjust based on selectivity.

Experiment 2: 3 tables query

Joins

◎ Shows that Lottery
performs nearly
optimally

◎ Naïve performs
between the best and
worst case.

Outline:

◎ Consideration for run-time optimization:
○ Synchronization barriers.
○ Moments of Symmetry.

◎ What is an Eddies?
◎ Routing Tuples in Eddies:

○ Naïve scheme
○ Lottery scheme

◎ Experiments to evaluate routing schemes

Thanks!

Any Questions?

Eddies: Continuously

Adaptive Query Processing

Speaker: Ohoud Alharbi

