
Data Cube: A Relational Aggregation Operator
Generalizing Group-By, Cross-Tab, and Sub-Totals

Jim Gray, Surajit Chaudhuri, Adam Bosworth, Andrew Layman, Don Reichart, Murali Venkatrao
Hamid Pirahesh, Frank Pellow

Presenter: Xiaoying Wang

How a relational database can support efficient
extraction of multidimensional information

What is a Data Cube in relational database?

Why do we need the Cube Operator?

How to implement the Cube Operator?

What is a Data Cube in relational database?

Why do we need the Cube Operator?

How to implement the Cube Operator?

Data Warehouse & OLAP

Multidimensional Data

Data Warehouse & OLAP

Data Cube

A Multidimensional Data Model

Dimension

location

time

item

Measurement

sales

Data Cube

In Relational Database:

A relation with n-attribute domains

Time Item Location Sales

Q1 Computer Vancouver 825

Q1 Security Vancouver 400

Q2 Phone Vancouver 31

Q2 Security New York 925

Q3 Security Chicago 789

What is a Data Cube in relational database?

Why do we need the Cube Operator?

How to implement the Cube Operator?

Too Many Dimensions!

Human are bad at understanding high dimensional data

Need to reduce the dimension: super aggregation

Roll Up

Operations: Roll-Up

`ALL` Value: Fill in the super-aggregation items

Operations: Roll-Up

Operation: Roll-Up

N dimensions: N Unions

ALL ALL ALL 290

Asymmetric! 
Missing:

Operation: Roll-Up

ALL ALL ALL 290

Cross Tabulation: 2D Symmetric Aggregation Result

Operation: Cross Tab

3-D Generalization of Cross Tab

3-D Generalization of Cross Tab

Group By x 8

N-D Generalization of Cross Tab

Group By x 2N

N-D Generalization of Cross Tab

Problems

Expressing with conventional SQL is exhaustive

Too complex to analyze for optimization

The Cube Operator

What is a Data Cube in relational database?

Why do we need the Cube Operator?

How to implement the Cube Operator?

How the Cube fit in SQL?

How to compute the Cube?

Compute The Cube

=

Implementation of Aggregate Functions

Start - Init (&handle): Allocates
the handle and initializes the
aggregate computation

Next - Iter (&handle, value):
Aggregates the next value into the
current aggregate

End - Final(&handle):
Computes and returns the resulting
aggregate by using data saved in the
handle. This invocation deallocates
the handle

handle

Implementation of Aggregate Functions

Start - Init (&handle): Allocates
the handle and initializes the
aggregate computation

Next - Iter (&handle, value):
Aggregates the next value into the
current aggregate

End - Final(&handle):
Computes and returns the resulting
aggregate by using data saved in the
handle. This invocation deallocates
the handle

handle
count=0

sum=0

Example of AVG

Implementation of Aggregate Functions

Start - Init (&handle): Allocates
the handle and initializes the
aggregate computation

Next - Iter (&handle, value):
Aggregates the next value into the
current aggregate

End - Final(&handle):
Computes and returns the resulting
aggregate by using data saved in the
handle. This invocation deallocates
the handle

handle
count+=1

sum+=value

Example of AVG

(…, value)

Implementation of Aggregate Functions

Start - Init (&handle): Allocates
the handle and initializes the
aggregate computation

Next - Iter (&handle, value):
Aggregates the next value into the
current aggregate

End - Final(&handle):
Computes and returns the resulting
aggregate by using data saved in the
handle. This invocation deallocates
the handle

handle
count

sum

sum/count

Example of AVG

 Algorithm

1. Allocate a handle for each cell of the cube - Init()

2. Each tuple needs to invoke the Iter() function once for the cells that match
the tuple

3. Compute result for each cell of the cube - Final()

2N

Branch Model Year Color Sales
Burnaby Chevy 1990 red 23
Richmond Chevy 1990 white 14
Richmond Chevy 1990 white 31
Burnaby Ford 1990 blue 23
Richmond Ford 1990 red 4
Burnaby Chevy 1991 blue 22
Richmond Ford 1992 red 32
… … … … …

 Algorithm

Invoke Init() & Final() one time for each cell

Invoke Iter() times for each tuple

2N

2N

Branch Model Year Color Sales
Burnaby Chevy 1990 red 23
Richmond Chevy 1990 white 14
Richmond Chevy 1990 white 31
Burnaby Ford 1990 blue 23
Richmond Ford 1990 red 4
Burnaby Chevy 1991 blue 22
Richmond Ford 1992 red 32
… … … … …

 Algorithm

Invoke Init() & Final() one time for each cell

Invoke Iter() times for each tuple

2N

2N Can be optimized

Branch Model Year Color Sales
Burnaby Chevy 1990 red 23
Richmond Chevy 1990 white 14
Richmond Chevy 1990 white 31
Burnaby Ford 1990 blue 23
Richmond Ford 1990 red 4
Burnaby Chevy 1991 blue 22
Richmond Ford 1992 red 32
… … … … …

Computing the Cube

Speed Up the Process

Make use of the middle result:

 N-D Aggregate -> (N-1)-D Aggregate

Branch Model Year Color Sales
Burnaby Chevy 1990 red 23
Richmond Chevy 1990 white 14
Richmond Chevy 1990 white 31
Burnaby Ford 1990 blue 23
Richmond Ford 1990 red 4
Burnaby Chevy 1991 blue 22
Richmond Ford 1992 red 32
… … … … …

Computing the Cube

Can F be computed in distributive manner?

Branch Model Year Color Sales
Burnaby Chevy 1990 red 23
Richmond Chevy 1990 white 14
Richmond Chevy 1990 white 31
Burnaby Ford 1990 blue 23
Richmond Ford 1990 red 4
Burnaby Chevy 1991 blue 22
Richmond Ford 1992 red 32
… … … … …

?

Aggregate Functions Classification

Distributive: SUM(), MIN(), MAX(), COUNT()

Can be computed in a distributive manner

Algebraic: AVG(), MaxN(), MinN()

Can be computed in a distributive manner with m arguments - need
to keep both the handle & the result for each cell

Holistic: Median()

No constant m exists - need to scan all the tuples

Computing the Cube

Speed Up the Process for Distributive & Algebraic Functions

Make use of the middle result

 Aggregate on the smallest list

Maintaining The Cube

Trigger Conditions: UPDATE, INSERT, DELETE

Can be different for the same function: MAX()

INSERT: Distributive

DELETE/UPDATE: Holistic
Branch Model Year Color Sales
Burnaby Chevy 1990 red 23
Richmon
d

Chevy 1990 white 14
Richmon Chevy 1990 white 31
Burnaby Ford 1990 blue 23
Richmon Ford 1990 red 4
Burnaby Chevy 1991 blue 22
Richmon Ford 1992 red 32
… … … … …

TakeAways

The cube operator computes aggregations over all possible
subsets of the specified dimensions

The result of the cube operator can be modeled as a data cube

We can speed up the computation of the cube for many
common aggregate functions by using the middle result

Q & A

