Data Cube: A Relational Aggregation Operator
Generalizing Group-By, Cross-Tab, and Sub-Totals

Jim Gray, Surajit Chaudhuri,Adam Bosworth,Andrew Layman, Don Reichart, Murali Venkatrao
Hamid Pirahesh, Frank Pellow

Presenter: Xiaoying Wang

How a relational database can support efficient
extraction of multidimensional information

What is a Data Cube in relational database!
Why do we need the Cube Operator?

How to implement the Cube Operator?

What is a Data Cube in relational database?
Why do we need the Cube Operator?

How to implement the Cube Operator?

Data Warehouse & OLAP

Monitoring & Admnistration

Metadata

Repository OLAP

Servers
Data Warehouse
Externa Extract

7
SOUTCEs Transform
Load
Operational Refresh % Serve
=

QO
i En

Data Marts Tools

Data sources

Data Warehouse & OLAP

Monitoring & Admnistration

Metadata

Multidimensional Data

/

> Repository

I\ Data Warehouse
Externa Extract

OLAP : _
Servers = Analy81

%Query/Reportin
Serve e I][ID]

P4
SOUrces Transform
Load
Operational Refresh %
dbs \/

Data sources

Data Marts

QO
i En

~ Data Minin

Tools

Data Cube

A Multidimensional Data Model .
&

Dimension o Chicago 854 ~882 -89 623

o NewYork 1087968 38 %72
location Toronto A18/746/43/591
Vancouver //‘)
time Qll 605 | 825 | 14 | 400 & v
? QL
Q
item £ Q2| 680 | 952 | 31 | 512 /q, \/
S y M
3
Measurement Z Q3| s12]1023] 30 | s01 g q/
Q4| 927 [1038 | 38 | 580
sales
| computer SCClll'ity
home phone

entertainment

item (types)

N

&

N2 X

=

Data Cube

In Relational Database:

882 89 623

e

&

\

f}fb

e

(o)
%»\

>
&

>

e

&
&
_0‘\\ Chicago AS4
A relation with n-attribute domains & NewYork_~1087-968 38 872
Toronto/i18/746/43/591
] Vancouver
Time Item Location Sales
Ql| 605 1-825 | 14 | 400
Q1 Computer [Vancouver 825 |
= Q2| 680 | 952 | 31 | 512
Q1 Security Vancouver 400 S
< Q3| 812]1023 | 30 | 501
Q2 Phone Vancouver 31 §
Q4| 927 | 1038 38 580
Q2 Security New York 925
_ _ | computer security
Q3 Security Chicago 789
home phone

entertainment

item (types)

N2 X

What is a Data Cube in relational database!
Why do we need the Cube Operator?

How to implement the Cube Operator?

loo Many Dimensions!

Human are bad at understanding high dimensional data

Need to reduce the dimension: super aggregation

A
&
\é& ‘ supplier="SUP1” supplier="SUP2” supplier="SUP3”
O ey Shicago T T 77 T 77T >
&‘Tewor//// T L L L T L L L
W Vapeooronto 7 7 7 N T N |

ancouver / /

an T LA A4AL A LA

£ Q1605|825 14 [400] 4T L 49% 49%

g | L |

= Q2 4% 49% 49%

S 1] 1| 1L,

ZQ < e L P | v

S 7 |~ |

R~ T e R e R B e R N R T e T >

|computer| security |computer| security |computer| security
home phone home phone home phone
entertainment entertainment entertainment
item (types) item (types) item (types) item (type)
home

time (quarter) entertainment computer phone security
Q1 605 825 14 400
Q2 680 952 31 512
Q3 812 1023 30 501
Q4 927 1038 38 580

Operations: Roll-Up

Table 3.a: Sales Roll Up by Model by Year by Color
Sales Sales Sales
Model | Year |[Colory by Model by Model by Model
by Year by Year
by Color
Chevy | 1994 |black 50
white 40
90
1995 |black 85
white 115
200
290

Roll Up =

Operations: Roll-Up

Table 3.a: Sales Roll Up by Model by Year by Color

Sales Sales Sales
Model | Year |[Colory by Model by Model by Model
by Year by Year
by Color
Chevy | 1994 |black 50
white 40
90
1995 |black 85
white 115
200
290

Table S.a: Sales Summary
Model | Year

"ALL" Value: Fill in the super-aggregation items

Operation: Roll-Up

SELECT ‘ALL’,

FROM
WHERE
UNION

SELECT Model,

FROM

WHERE

GROUP BY
UNION

SELECT Model,

FROM

WHERE

GROUP BY
UNION

SELECT Model,

FFROM
WHERE
GROUP BY

‘ALL’”, ‘ALL’, SUM(Sales)
Sales
Model = 'Chevy'

‘ALL"”, ‘ALL’, SUM(Sales)
Sales
Model = 'Chevy'
Model

Year, ‘ALL’, SUM(Sales)
Sales

Model = 'Chevy'

Model, Year

Year, Color, SUM(Sales)
Sales

Model = 'Chevy'

Model, Year, Color;

N dimensions: N Unions

Table S.a: Sales Summary

ALL ALL ALL 290

Operation: Roll-Up

Asymmetric!

Missing:

Table 5.b: Sales Summary rows missing form
Table 5.a to convert the roll-up into a cube.

SUM (Sales)

Model Year Color Units
Chevy ALL black 135
Chevy ALL white 155
UNION
SELECT Model, ‘ALL’, Color,
FROM Sales
WHERE Model = 'Chevy'

GROUP BY Model,

Color;

Table S.a: Sales Summary
Model | Year

ALL ALL ALL 290

Operation: Cross Tab

Cross Tabulation: 2D Symmetric Aggregation Result

Table 6.a: Chevy Sales Cross Tab
Chevy 1994 1995 total (ALL)

black

white
total (ALL)

3-D Generalization of Cross Iab

Aggregate

Sum Group By
(with total)

By Color

RED
WHITE
BLUE

Sum

Cross Tab
Chevy Ford By Color

RED
WHITE
BLUE

By Make (IR [The Data Cube and

Sum The Sub-Space Aggregates

o2
= N
By Yearen
- By Make
By Make & Year ‘

RED

~_|WHITE
BLUE

By Color & Ye
By Make & Color

Sum By Color

3-D Generalization of Cross Iab

Aggregate

Sum Group By
(with total)

By Color

RED
WHITE
BLUE

Sum

Cross Tab
Chevy Ford By Color

RED
WHITE
BLUE

By Make [N [

Sum

The Data Cube and
The Sub-Space Aggregates

By Make & Color
Sum By Color

SELECT ‘ALL’, ‘ALL’, ‘ALL’, SUM(Sales)

FROM Sales
UNION
SELECT Model, ‘ALL’, ‘ALL’, SUM(Sales)
FROM Sales
GROUP BY Model
O
O
® Group By x 8
O
UNION
SELECT Model, Year, ‘ALL’, SUM(Sales)
FROM Sales
GROUP BY Model, Year
UNION
SELECT Model, Year, Color, SUM(Sales)
FFROM Sales

GROUP BY Model, Year, Color;

N-D Generalization of Cross Tab

Aggregate

Sum Group By
(with total)

By Color

RED
WHITE
BLUE

Sum

Cross Tab
Chevy Ford By Color

RED
WHITE
BLUE

By Make [N [

Sum

The Data Cube and
The Sub-Space Aggregates

By Make & Color
Sum By Color

SELECT ‘ALL’, ‘ALL’, ‘ALL’, SUM(Sales)

FROM Sales
UNION
SELECT Model, ‘ALL’, ‘ALL’, SUM(Sales)
FROM Sales
GROUP BY Model
O
N N
® Group By x2
O
UNION
SELECT Model, Year, ‘ALL’, SUM(Sales)
FROM Sales
GROUP BY Model, Year
UNION
SELECT Model, Year, Color, SUM(Sales)
FFROM Sales

GROUP BY Model, Year, Color;

N-D Generalization of Cross Tab

Problems
Expressing with conventional SQL is exhaustive

Too complex to analyze for optimization

The Cube Operator

Aggregate
[]
Sum Group By
(with total)
By Color
RED
WHITE SELECT Model, Year, Color, SUM(sales) AS Sales
BLUE FROM Sales
S- WHERE Model in {'Ford', 'Chevy'}
um Cross Tab AND Year BETWEEN 1990 AND 1992
. Chevy Ford By Color GROUP BY CUBE Model, Year, Color;
WHITE
BLUE

By Make (IR [The Data Cube and

Sum phe Sub-Space Aggregates

By Make & Color
Sum By Color

What is a Data Cube in relational database!?

Why do we need the Cube Operator?

How to implement the Cube Operator?
How the Cube fit in SQL?

How to compute the Cube?

Compute The Cube

SELECT ‘ALL’, ‘ALL’, ‘ALL’, SUM(Sales)

FROM Sales

UNION

SELECT Model, ‘ALL’, ‘ALL’, SUM(Sales)
FROM Sales

GROUP BY Model

SELECT Model, Year, Color, SUM(sales) AS Sales

FROM Sales O
WHERE Model in {'Ford', 'Chevy'} O
AND Year BETWEEN 1990 AND 1992 — O
GROUP BY CUBE Model, Year, Color; O
UNION
SELECT Model, Year, ‘ALL’, SUM(Sales)
FROM Sales
GROUP BY Model, Year
UNION
SELECT Model, Year, Color, SUM(Sales)
FROM Sales

GROUP BY Model, Year, Color;

Implementation of Aggregate Functions

Start - Init (&handle):Allocates
the handle and initializes the
aggregate computation

Next - Iter (&handle, value):
Aggregates the next value into the
current aggregate

End - Final(&handle):
Computes and returns the resulting
aggregate by using data saved in the
handle. This invocation deallocates
the handle

Implementation of Aggregate Functions

Example of AVG

handle

sum=0

count=0

Start - Init (&handle):Allocates
the handle and initializes the
aggregate computation

Next - Iter (&handle, value):
Aggregates the next value into the
current aggregate

End - Final(&handle):
Computes and returns the resulting
aggregate by using data saved in the
handle. This invocation deallocates
the handle

Implementation of Aggregate Functions

Example of AVG

(..., value)

@ handle

sum+=value

count+=|

Start - Init (&handle):Allocates
the handle and initializes the
aggregate computation

Next - Iter (&handle, value):
Aggregates the next value into the
current aggregate

End - Final(&handle):
Computes and returns the resulting
aggregate by using data saved in the
handle. This invocation deallocates
the handle

Implementation of Aggregate Functions

Example of AVG

sum
handle
count
sum/count

Start - Init (&handle):Allocates
the handle and initializes the
aggregate computation

Next - Iter (&handle, value):
Aggregates the next value into the
current aggregate

End - Final(&handle):
Computes and returns the resulting
aggregate by using data saved in the
handle. This invocation deallocates
the handle

2N Algorithm

|. Allocate a handle for each cell of the cube - Init()

2. Each tuple needs to invoke the Iter() function once for the cells that match
the tuple

3. Compute result for each cell of the cube - Final()

Branch |Model |Year |Color Sales \9‘%\993
Burnaby |Chevy [1990 |red 23 By Yearse, @

Richmond|Chevy [1990 (white 14 By Make & Year .
Richmond|Chevy [1990 (white 31

Burnaby |Ford 1990 |blue 23 ’ WHITE
Richmond|Ford 1990 |red 4 BLUE
Burnaby |Chevy |1991 |blue 22 By Color & Year

Richmond|Ford (1992 |red 32 By Make & Color

Sum By Color

2N Algorithm

Invoke Init() & Final() one time for each cell

Invoke Iter() 2V times for each tuple

Model |Year |[Color Sales

Burnaby |Chevy |1990 [red 23
Richmond |Chevy {1990 |white 14
Richmond |Chevy |1990 (white 31

Branch

Burnaby |Ford (1990 |blue 23 ’
Richmond [Ford (1990 |red 4
Burnaby |Chevy (1991 |blue 22
Richmond [Ford |1992 |red 32

By Make & Color
Sum By Color

2N Algorithm

Invoke Init() & Final() one time for each cell

Invoke Iter() 2" times for each tuple

Branch |Model |Year |Color Sales
Burnaby [Chevy |1990 [red 23
Richmond |Chevy {1990 |white 14
Richmond [Chevy 1990 (white 31
Burnaby |Ford (1990 |blue 23
Richmond [Ford [|1990 |[red 4
Burnaby |Chevy (1991 |blue 22
Richmond |Ford [1992 |red 32

Sum

<— Can be optimized

By Make & Color
By Color

Computing the Cube

Speed Up the Process

Make use of the middle result:

N-D Aggregate -> (N-1)-D Aggregate

Branch |Model |Year |Color Sales
Burnaby |Chevy |1990 [red 23
Richmond |Chevy (1990 |white 14
Richmond|Chevy [1990 (white 31
Burnaby |[Ford 1990 (blue 23
Richmond|Ford 1990 (red 4
Burnaby [Chevy (1991 |blue 22
Richmond |Ford 1992 |red 32

By Make & Color
By Color

Sum

Computing the Cube

Can F be computed in distributive manner?

F (0]

| ?
G F [Subset]F [Subset F [Sbt] F [Sbt]
o A
Branch |Model |Year |[Color Sales @\9 \993
By Yea
Bernaby Chevy [1990 red. 23 . By Make
Richmond|Chevy [1990 |white 14 By Make & Year I
Richmond|Chevy [1990 (white 31 RED
Burnaby |Ford 1990 |blue 23 ’ WHITE
Richmond|Ford 1990 |red 4 BLUE
Burnaby |Chevy |1991 |blue 22 By Color & Year
Richmond |Ford 1992 |red 32 By Make & Color
Sum By Color

Agsregate Functions Classification

Distributive: SUM(), MIN(), MAX(), COUNT()
Can be computed in a distributive manner

Algebraic: AVG(), MaxN(), MinN()

Can be computed in a distributive manner with m arguments - need
to keep both the handle & the result for each cell

Holistic: Median()

No constant m exists - need to scan all the tuples

Computing the Cube

Speed Up the Process for Distributive & Algebraic Functions
Make use of the middle result

Aggregate on the smallest list

By Make & Color
Sum By Color

Maintaining The Cube

Trigger Conditions: UPDATE, INSERT, DELETE

Can be different for the same function: MAX()

INSERT: Distributive

DELETE/UPDATE: Holistic

Branch |Model |Year |Color (Sales
Burnaby |Chevy {1990 |red 23
Richmon|Chevy [1990 |white 14
Richmon|Chevy {1990 |white 31

Burnaby |Ford ({1990 |blue 23
Richmon|Ford [1990 |red 4
Burnaby |Chevy {1991 |blue 22
Richmon|Ford [1992 |red 32

A
¥ \ \9?\%93
By Yearen
e By Make
RED
—_|WHITE
BLUE
By Color & Year

By Make & Color
Sum By Color

TakeAways

The cube operator computes aggregations over all possible
subsets of the specified dimensions

The result of the cube operator can be modeled as a data cube

We can speed up the computation of the cube for many
common aggregate functions by using the middle result

Q&A

