
CAP TWELVE YEARS LATER: HOW THE “RULES”
HAVE CHANGED

B Y: E R I C B R E WE R , U N I VE R S I T Y O F C A L I F O R N I A , B E R K E L E Y

Speaker:
Ohoud Alharbi

OUTLINE

CAP Theorem Why 2 of 3 in CAP
theorem is misleading?

CAP-Latency Connection Managing Partitions

THE CAP THEOREM
Any networked shared-data system can have at

most two of the three CAP properties

PROPERTIES OF DISTRIBUTED SYSTEMS

Consistency
Having single up to date copy of

the data.
All nodes see the same data at

the same time

Availability
A guarantee that every request

receives a response about
whether it was successful or

failed

Partition tolerance
The system continues to operate

despite arbitrary message loss or
failure of part of the system

WHY “2 OF 3” IS MISLEADING?

Oversimplify the tensions among properties.

Partitions are rare, CAP should allow perfect C and A most of the time

There is an incredible range of flexibility for handing partitions and recovering.

The choices between C and A can occur at granular levels (subsystem level, based on
operation, based on user, based on data ..etc.)

All three properties are more continuous than binary (0-100%).

CAP-LATENCYCONNECTION
o The CAP theorem ignores latency.
o Latency and partitions are deeply related.

o Operationally, the essence of CAP takes place during a timeout.
Timeout: a period when the program must make a fundamental
decision:

q Cancel the operation and decrease availability.
q Proceed with operation and risk consistency.

o Retrying communication just delays this decision and indefinite retry is
essentially C over A

PRAGMATIC VIEW
Pragmatically, a partition is a time bound on communication. Failing to achieve
consistency within the time bound implies a partition and thus a choice between C
and A for this operation.

Pragmatic view consequences:
o No global notion of partition: some nodes may detect partition others not.
o Nodes that detected partition can enter partitionmode: optimize the

consistency and availability in partitionmode
o Designer can set time bounds according to their needs: tighter time

bounds may make subsystems enter partition mode frequently.

THE CONSISTENCY-LATENCY TRADE-OFF
o Data Replication implies a trade-off between

consistencyand latency as we have to update
replicas.

There are two ways to send data updates
q Data updates sent to all replicas at the same

time.
q Data updates send to a master copy.

Data Replication

HighAvailability

Trade off between
Consistency and

Latency

DATA UPDATES SENT TO ALL REPLICAS

Data updates sent to all replicas at the same time:

• Result in lack of consistency.
• Result in Latency.

DATA UPDATES SENT TO A MASTER NODE

o The master nodes resolves updates.

o There are 3 options for replication of updated data:

1. Replication is synchronous. (increase latency)

2. Replication is asynchronous:

a) Systems routes all read to the master node (increase latency)
b) Any node can serve read request (lack of consistency)

3. A combination of two above:
The system sends updates to some subset of replicas synchronously and
rest asynchronously.

MANAGING
PARTITIONS

1. Detect partitions.

2. Enter an explicit partition mode that can limit some
operations

3. Initiate a recovery process to restore consistency and
compensate for mistakes made during a partition.

MANAGING PARTITIONS

MANAGING PARTITIONS

MANAGING PARTITIONS

oOnce the system times out, it detects a partition.

o The detecting side enters partition mode.

oOnce the system enters partition mode, two strategies are possible:

1. Limit some operations, thereby reducing availability.

2. Record extra information about the operations that will be helpful

during partition recovery.

WHICH OPERATIONS CAN PROCEED IN PARTITION MODE?

The designer must decide whether:

o Maintain a particular invariant during partition mode
or

o Risk violating it with the intent of restoring it during recovery.

E.g. Designers allow duplicate keys during a partition. Duplicate keys are
easy to detect during recovery, and, assuming that they can be merged.

WHICH OPERATIONS CAN PROCEED IN PARTITION MODE?

o Partition mode gives rise to a fundamental user-interface
challenge.

E.g. cloud services with an offline mode such Google Docs.

o The best way to track the history of operation on both
side is to use version vectors

Vector’s elements are a pair (node, logical time).

PARTITION
RECOVERY

PARTITIONRECOVERY
The designer must solve two hard problems during recovery:

1. Re-enforce consistency on both sides

qHandle merge conflicts
§ Manual conflict merging

(Wiki offline mode, GitHub)

§ Merge conflicts by following certain rules
(Google Docs)

PARTITIONRECOVERY
The designer must solve two hard problems during recovery:

1. Re-enforce consistency on both sides

q Automatic state convergence
§ Delaying risky operations.
(constrain the use of certain operations during partitioning)

§ Commutative operations.
(The system links logs together, sorts them into some order, and then executes them)

PARTITIONRECOVERY
The designer must solve two hard problems during recovery:

2. Compensate for the mistakes made during partition mode
oThe designer create a restoration strategy for each

invariant.
oThe system discovers the violation during recovery and must

fix at that time:
q“last writer wins” (which ignores some updates).

qMerge operations, and human escalation (e.g. overbooking).

PARTITIONRECOVERY
The designer must solve two hard problems during recovery:

oRecovering from externalized mistakes typically requires
some history about externalized outputs.

o Issuing compensating actions.
E.g. reverse transactions, refunds, coupons, charging a fee.

RECAP
o The CAP theorem asserts that networked shared-data system can have only two
of three properties.

o System designers should not sacrifice consistency or availability when partitions
exist.

o By explicitly handling partitions, designers can optimize consistency and
availability.

o Designers can choose to constrain the use of certain operations during
partitioning so that the system can automatically merge state during recovery.

oDesigners can choose to risk violating invariants with the intent of restoring it
during recovery.

o Explicit details of all system invariants during partition are needed to enable
recovery.

THANK YOU!

