
CMPT 843 Paper Presentation
March 14,2019

Bigtable : A Distributed Storage System for Structured Data

Presented by Ankita Sakhuja

Overview

• Introduction
• Data model
• Building Blocks
• Implementations
• Refinements
• Performance Evaluation
• Real Applications
• Conclusions

Motivation

• Google has lots of data
• Scale of data is too large. Even for commercial databases.

Even though Google is best known for its fast and reliable services, but what’s working behind there ?

Undoubtedly, there are number of aspects that matter behind this (like Hardware, Software, OS, Best staff in the
world etc.)

But what I am going to discuss here is the Software part

qGFS
q Chubby
q Bigtable

Why not a DBMS ?

• Scale is too large for commercial databases
• Cost would be very high
• Low-level storage optimizations help performance significantly
• Hard to map semi-structured data to relational database
• Non-uniform fields makes it difficult to insert/query data

What is
Bigtable ?

Bigtable is a distributed storage system for managing
structured data

Bigtable doesn’t support a full relational model

Scalable

Self-managing

Used for variety of
demanding workloads

- Throughput oriented batch processing

- Latency specific data serving

Used by more than 60
google products

- Google Analytics, Google Finance

- Personalized Search ,Google Earth

- Google Documents...

Goals

• Wide applicability
• Scalability
• High Performance
• High Availability

Simple data model that supports dynamic control over data layout and format

Data Model

• A Bigtable is a sparse , distributed , persistent multidimensional
sorted map.

A given row can
have any number of
columns in each
column family, or
none at all.

It’s built upon
distributed
filesystems so that
the underlying file
storage can be
spread out among
array of
independent
machines.

Data you put in this
special map
“persists” after the
program that
created or accessed
is finished.

A map of
all maps

Bigtable the
key/value pairs are
kept in strict
alphabetical order.

Data model
• The map is indexed by a row key, column key and a timestamp.

• Row :
• Row keys in a table are arbitrary strings
• Data is maintained in lexicographic order by row key
• Each row range is called a tablet, which is a unit of distribution and load

balancing.

• Column
• Column keys are grouped into sets called column families.
• Data stored in column family is usually of the same type.
• A column key is named using the syntax : family: qualifier.

• Timestamp
• Each cell in data table can contain multiple versions of the same data.
• Versions are indexed by 64-bit integer timestamps.
• Timestamps are assigned:

• Automatically by Bigtable , or ,
• Explicitly by client applications

Data model

Bigtable API’s

• Provides following functions
• Creating and deleting tables and column families

• Changing cluster , table and column family metadata

• Support for single-row transactions
• Allows cells to be used as integer counters

• Client supplied scripts could be executed in the address space of servers

Building Blocks

• Bigtable is built on several other pieces of
Google infrastructure
• Google File System (GFS)

• Used to store log and data files
• SSTable : Data Structure for storage

• Used to store table data in GFS
• Used to store and retrieve the pairs < Key,

Value >
• Used as pointers to pairs < Key, Value > stored

in GFS
• Chubby : Distributed lock-service

Chubby
- Chubby is highly available and persistent distributed

lock service
- Chubby service consists of 5 active replicas with one

master to serve requests
- Each directory/file can be used as a lock
- Each clients has a session with Chubby.
- The session expires if it is unable to renew its session

lease within the lease expiration time.
- Also an OSDI �06 Paper

Chubby unavailable = Bigtable unavailable

Implementation

Ø Three major components

• Library linked to every client

• Single master server
• Assigning tablets or tablet servers
• Detecting addition and expiration of tablet

servers
• Balancing tablet-server load
• Garbage Collection files in GFS

• Many Tablet servers
• Manages a set of tablets
• Tablet servers handles read and write requests

to its table
• Split tablets that have grown too large

Locating Tablets

• Three – level hierarchy
• Level 1 : Chubby file containing location of the

root tablet
• Level 2 : Root tablet contains the location of

Metadata tablets
• Level 3 : Each METADATA tablet contains the

location of user tablets

Location of a tablet is stored under Row key that
encodes table identifier and it’s end row.

Assigning
Tablets

• Tablet server startup
• It creates and acquires an exclusive lock on a

uniquely named file on Chubby.
• Master monitors this directory to discover

tablet servers.

• Tablet server stops serving tablets if..
• It loses its exclusive lock.
• File no longer exists, the tablet server will

never be able to serve again.

Assigning Tablets

• Master Server Startup

• Grabs unique master lock in Chubby

• Scans the tablet server directory in Chubby

• Communicates with every live Tablet server

• Scans the METADATA table to learn set of tablets.

Master is responsible for finding when the tablet server is no longer

serving it’s tablets and reassigning those tablets as soon as possible.

Step 1

• Periodically

asks each

tablet server

for status of

it’s locks

Step 2

• If no reply,

Master

tries to

acquire the

lock itself

Step 3

•If successful to

acquire the

lock, then

tablet server

is either dead

or having

network

problem

Tablet Serving

Write Operation

• Server checks if it is well-performed
• Checks if the author is authorized
• Writes to commit log
• After commit, contents are inserted into

memtable

Read Operation

• Checks well-formedness of request
• Checks authorization in Chubby file
• Merge memtable and SSTable to find data
• Return data

Compaction

• Minor compaction – convert the memtable into an
SSTable
• Reduce memory usage
• Reduce log traffic on restart

• Merging compaction
• Reduce number of SSTables
• Good place to apply policy “keep only N

versions”

• Major compaction
• Merging compaction that results in only one

SSTable
• No deletion records, only live data

Refinements

Locality
Groups

• Clients can group multiple column families
together into locality groups

Compression

• Compression applied to each SSTable block
separately

Bloom Filters
• Reduce the number of disk accesses

Caching
• Caching SSTables for a better peroformance

Performance Evaluation > As the number of tablet servers is increased by a factor of
500:
Performance of random reads from memory increases by a factor of
300.
Performance of scans increases by a factor of 260.

Not Linear!
WHY?

Applications at Google

TakeAways

• Lessons Learnt
• Large distributed systems are vulnerable to many types of failure
• Importance of proper system-level monitoring
• The value is in simple designs

• Conclusions
• 7 years on design and implementations, in production since April 2005
• +16 projects were using Bigtable (August 2006)

Performance and high availability
Scaling capabilities by simply adding more machines

SQL users are sometimes uncertain of how to best use Bigtable interfaces

Thankyou !

