CMPT 843 Paper Presentation
March 14,2019

” Bigtable : A Distributed Storage System for Structured Data

<J

Presented by Ankita Sakhuja

Introduction

e Data model

e Building Blocks
. * Implementations

Overview

e Refinements

* Performance Evaluation

* Real Applications

Conclusions

a Motivation

* Google has lots of data
» Scale of data is too large. Even for commercial databases.

Even though Google is best known for its fast and reliable services, but what’s working behind there ?

UndI(()jubteo)IIy, there are number of aspects that matter behind this (like Hardware, Software, OS, Best staff in the
world etc.

But what | am going to discuss here is the Software part
O GFS

O Chubby
U Bigtable

Why not a DBMS ?

Scale is too large for commercial databases

Cost would be very high

Low-level storage optimizations help performance significantly

Hard to map semi-structured data to relational database

Non-uniform fields makes it difficult to insert/query data

What is

Bigtable ?

Bigtable is a distributed storage system for managing

structured data

Bigtable doesn’t support a full relational model

Scalable

Self-managing

Used for variety of
demanding workloads

Used by more than 60
google products

- Throughput oriented batch processing

- Latency specific data serving

- Google Analytics, Google Finance
- Personalized Search ,Google Earth

- Google Documents...

Data Model

* A Bigtable is a sparse, distributed , persistent multidimensional

sorted map.

Bigtable the
key/value pairs are
kept in strict
alphabetical order.

{

v

A given row can

have any number of

columns in each
column family, or

none at all.
s R B
"aaaaa" : "y",
"aaaab" : "world",
"xyz" : "hello",
"zzzzz" : "woot"

v
It’s built upon
distributed
filesystems so that
the underlying file
storage can be
spread out among
array of
independent
machines.

v

Data you put in this

special map
“persists” after the
program that

created or accessed

is finished.

A map of
all maps

‘@ Data model

* The map is indexed by a row key, column key and a timestamp.

(row:string, column:string, time:int64) — string

* Row :
* Row keys in a table are arbitrary strings
e Data is maintained in lexicographic order by row key

* Each row range is called a tablet, which is a unit of distribution and load
balancing.

Rows

‘www.cnn.com” —»

e Column
e Column keys are grouped into sets called column families.
* Data stored in column family is usually of the same type.
* A column key is named using the syntax : family: qualifier.

* Timestamp
* Each cell in data table can contain multiple versions of the same data.
* Versions are indexed by 64-bit integer timestamps.

* Timestamps are assigned: “contents:” Columns

e Automatically by Bigtable , or, :
. Rows | v
* Explicitly by client applications

“www.cnn.com”

Tir:nestamps

Row key

64 KB string in lexicographic order

<€

Data model

Column Family example
with only one column key

Column Family example with
variable multiple column keys

\ [/ N/

W ™~/
| k Column Family Column Family Column Family
Column ey contents language anchor
string = family:qualifier
> contents: language: anchor:cnnsi.com anchor:my.look.ca
com.cnn.www L chtmis -y EN & 16 CNN €19 NN.com | &8
<html>... &« 16
4 7|
com.google.www A cell is an un-interpreted
= [array of bytes

com.lego.com

Cell versions are custom garbage-collected by

column family:
org.apache.hadoop * Keep the last N versions

* Only keep values written in the last M days
org.apache.hbase The row range for a

Timestamp management requires delete operations table is dynamically
org.golang to be also recorded (= tombstone marker) partitioned in tablets

Column

<—— Family

name

Tablet 3

Bigtable API's

* Provides following functions
* Creating and deleting tables and column families

CreateTable(table) / DeleteTable(table)
CreateColumnFamily(columnFamily) / DeleteColumnFamily(columnFamily)
 Changing cluster, table and column family metadata
SetTableFlag(table, flags) /
SetColumnFamilyFlag(table, colfamily, flags) /
* Allows cells to be used as integer counters
Increment (rowkey, columnkey, 1ncrement)
* Client supplied scripts could be executed in the address space of servers
Sawzall

Building Blocks METADATA tablets (125 ms)

» Bigtable is built on several other pieces of - - -

Google infrastructure

* Google File System (GFS)
* Used to store log and data files DATA tablets = ssTable files (64 KB blocks)
e SSTable : Data Structure for storage Sy

e Used to store table data in GFS

* Used to store and retrieve the pairs < Key,
Value >

* Used as pointers to pairs < Key, Value > stored

0 € Log files

e Chubby : Distributed lock-service - - -

Chubby

Chubby is highly available and persistent distributed

lock service

Chubby service consists of 5 active replicas with one

master to serve requests

Each directory/file can be used as a lock

Each clients has a session with Chubby.

The session expires if it is unable to renew its session
lease within the lease expiration time.

Also an OSDI '06 Paper

Chubby unavailable = Bigtable unavailable

" Chubby cell

» Three major components

 Library linked to every client

* Single master server
* Assigning tablets or tablet servers

| m p | eme ntatio N * Detecting addition and expiration of tablet

servers
* Balancing tablet-server load
* Garbage Collection files in GFS

* Many Tablet servers
* Manages a set of tablets

e Tablet servers handles read and write requests
to its table

* Split tablets that have grown too large

Locating Tablets

* Three — level hierarchy

e Level 1: Chubby file containing location of the
root tablet

e Level 2 : Root tablet contains the location of
Metadata tablets

 Level 3 : Each METADATA tablet contains the
location of user tablets

Location of a tablet is stored under Row key that
encodes table identifier and it’s end row.

UserTable1

Other < S
METADATA /FB——————
tablets ety
Root tablet N :
Chubby file TADATA tablet) /]
) e » USeITabIeN
*::::::E?:::::
D i B
‘:::::::::::::
Tablet Tablet
aardvark apple apple_two_E boat

SSTable

SSTable

SSTable

SSTable

e Tablet server startup

* |t creates and acquires an exclusive lock on a
uniquely named file on Chubby.

* Master monitors this directory to discover
tablet servers.

Assigning
Ta b | ets * Tablet server stops serving tablets if..

* |t loses its exclusive lock.

* File no longer exists, the tablet server will
never be able to serve again.

Assigning Tablets

asks each
tablet server
for status of

it’s locks
* Master Server Startup
* Grabs uniqgue master lock in Chubby *ftno reply,
aster
* Scans the tablet server directory in Chubby ;rcizs_t;the
ul

 Communicates with every live Tablet server lock itself

* Scans the METADATA table to learn set of tablets. .

e If successful to
acquire the
lock, then
tablet server

.) . . is either dead
O Master is responsible for finding when the tablet server is no longer or having
— serving it’s tablets and reassigning those tablets as soon as possible. network

problem

Tablet Serving

‘ memtable o Resd Op >

Memory / \
GFS yd X

tablet log

]

-

SSTable Files

Write Operation Read Operation

e Server checks if it is well-performed e Checks well-formedness of request

e Checks if the author is authorized e Checks authorization in Chubby file

e Writes to commit log e Merge memtable and SSTable to find data
e After commit, contents are inserted into e Return data

memtable

Tablet server Tablet server
WRITE memtable READ WRITE memtable —)ﬁ

Compaction e y 7

. GFS) ssr-bl."_.
* Minor compaction — convert the memtable into an

SSTable g Tablet serve Tablet server 7
[]
Reduce riErneny thelye | WRITE me::tfble READ wnns me]:::ble —)I READ

* Reduce log traffic on restart

* Merging compaction

i

NEW
SSTable

0o B & 2

* Reduce number of SSTables GES

* Good place to apply policy “keep only N
versions”

V.

* Major compaction

Tablet Tablet
« Merging compaction that results in only one e ablet server
SSTable WRITE memtable READ = WRITE mgmtable
* No deletion records, only live data l =7 i l e
= New SSTable

_GFS GFS

Refinements

e Clients can group multiple column families
together into locality groups

e Compression applied to each SSTable block
separately

e Reduce the number of disk accesses

e Caching SSTables for a better peroformance

Pe rfo r m a n C e Eva | u a t I O n 5>0/3:s the number of tablet servers is increased by a factor of

Performance of random reads from memory increases by a factor of
300.
Performance of scans increases by a factor of 260.

=

£ 4M

S —@— scans

2 — #— random reads (mem)

5 3M —¢— random writes - -

2" — -A— sequential reads -7

& —>— sequential writes _ -

) -

‘= 2M 94— +— random reads _u

= 7

—-— -

© IM -~ ==

% “Ad :

= e __ e m e e N Not Linear!

> ll ?
100 200 300 400 500 WHY™

Number of tablet servers

Applications at Google

Project Table size | Compression | # Cells | # Column | # Locality @ in Latency-
name (TH) ratio (hillions) | Families Groups memory | sensitive?
Crawl BOO 1 1% 1000 16 B 0% No
Crawl 50 33% 200 2 2 0% No
Google Analvtics 200 20% 10 | l 0% Yes
Google Analvtics 200 145 1l 1 1 0% Yes
Google Base 2 31% 10 29 3 155 Yes
Groogle Earth (0.5 64 % 5 7 2 335 Yes
Groogle Earth T — 4 8 3 0% Mo
Orkur 9 — (.9 8 3 1 % Yes
Personalized Search — 47% 4] 03 Il 3% Yes
T, | e
' Gooqle n— 1=
D ~ GOOg|€ Earth g
e s

TakeAways

* Lessons Learnt
» Large distributed systems are vulnerable to many types of failure
* Importance of proper system-level monitoring
* The value is in simple designs

e Conclusions
e 7 years on design and implementations, in production since April 2005
* +16 projects were using Bigtable (August 2006)

Performance and high availability
Scaling capabilities by simply adding more machines

SQL users are sometimes uncertain of how to best use Bigtable interfaces

bigtable google

Thankyou |

