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ABSTRACT
In emerging Big Data scenarios, obtaining timely, high-
quality answers to aggregate queries is difficult due to
the challenges of processing and cleaning large, dirty data
sets. To increase the speed of query processing, there has
been a resurgence of interest in sampling-based approximate
query processing (SAQP). In its usual formulation, however,
SAQP does not address data cleaning at all, and in fact, ex-
acerbates answer quality problems by introducing sampling
error. In this paper, we explore an intriguing opportunity.
That is, we explore the use of sampling to actually improve
answer quality. We introduce the Sample-and-Clean frame-
work, which applies data cleaning to a relatively small subset
of the data and uses the results of the cleaning process to
lessen the impact of dirty data on aggregate query answers.
We derive confidence intervals as a function of sample size
and show how our approach addresses error bias. We evalu-
ate the Sample-and-Clean framework using data from three
sources: the TPC-H benchmark with synthetic noise, a sub-
set of the Microsoft academic citation index and a sensor
data set. Our results are consistent with the theoretical
confidence intervals and suggest that the Sample-and-Clean
framework can produce significant improvements in accu-
racy compared to query processing without data cleaning
and speed compared to data cleaning without sampling.

1. INTRODUCTION
Aggregate query processing over very large datasets can

be slow and prone to error due to dirty (missing, erroneous,
duplicated, or corrupted) values. Sampling-based approxi-
mate query processing (SAQP) is a powerful technique that
allows for fast approximate results on large datasets. It
has been well studied in the database community since the
1990s [2,32], and methods such as BlinkDB [3] have drawn
renewed attention in recent big data research.

SAQP’s result estimates assume that the only source of
error is uncertainty introduced by sampling, however, the
data itself may contain errors which could also affect query
results. According to an industry survey, more than 25% of
the critical data in top companies contained significant data
errors [51]. Real-world data is commonly integrated from
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multiple sources, and the integration process may lead to a
variety of data errors, such as incorrect values and duplicate
representations of the same real-world entity [21]. Therefore,
even running a query on the entire data may still not get an
accurate query result, and sampling further reduces result
quality.

Data cleaning typically requires domain-specific software
that can be costly and time-consuming to develop. Particu-
larly, in order to obtain reliable cleaning results, many data-
cleaning techniques need humans to get involved [24,36,58].
While crowdsourcing makes this increasingly feasible, it is
still highly inefficient for large datasets [54].

In this paper, we explore an intriguing opportunity that
sampling presents, namely, that when integrated with data
cleaning, sampling has potential to improve answer quality.
We present SampleClean, a novel framework that cleans only
samples of the data to process aggregate queries (e.g., avg,
count, sum, etc). SampleClean employs two approaches to es-
timate a query from the cleaned sample: (1) NormalizedSC
uses the cleaned sample to correct the error in a query result
over the dirty data; (2) RawSC directly estimates the true
query result based on the cleaned sample. Both of these
approaches return unbiased query results and confidence in-
tervals as a function of sample size.

Comparing the two approaches, we find that Normal-
izedSC gives more accurate results on datasets with rel-
atively small errors, whereas RawSC is more robust to
datasets with more errors. Since SampleClean can return the
better result of NormalizedSC and RawSC, it gives accurate
estimates for a variety of different error distributions.

In summary, our paper makes the following contributions:

• We present SampleClean, a novel framework which only
requires users to clean a sample of data, and utilizes
the cleaned sample to process aggregate queries.

• We propose NormalizedSC that can use a cleaned sam-
ple to correct the bias of the query results over the
uncleaned data.

• We develop RawSC that can use a cleaned sample to
directly estimate the query results of the cleaned data.

• We conduct extensive experiments on both real and
synthetic data sets. The results suggest that estimated
values can rapidly converge toward the true values with
surprisingly few cleaned samples, offering significant
improvement in cost over cleaning all of the data and
significant improvement in accuracy over cleaning none
of the data.

The paper is organized as follows. Section 2 presents Sam-
pleClean framework for query processing on dirty data. We
present RawSC in Section 3 and discuss NormalizedSC in
Section 4. We describe the experimental results in Section 5.
Section 6 covers related work and Section 7 makes the con-
clusion.



2. QUERY PROCESSING ON DIRTY DATA
Like other SAQP systems, our main focus is on aggregate

numerical queries (avg, sum, count, var, geomean, product)
of the form:

SELECT f(attrs) FROM table
WHERE predicate
GROUP BY attrs

When running the aggregate queries on large and dirty
datasets, there may be two separate sources of errors that
affect result quality. (1) Sampling error: since data is large,
we may execute queries on a sample of the data to reduce
query times. (2) Data error: since real-world data is dirty,
queries on the dirty data also lead to inaccurate query re-
sults.

In this section, we first precisely characterize sampling and
data errors, and then present our SampleClean framework to
deal with these two types of errors. Throughout the section,
we will refer to the following example query on a dataset of
academic publications:

SELECT AVG(citation_count) FROM papers
GROUP BY pub_year

which finds the average number of citations of the publica-
tions published every year.

2.1 Sampling Error
There are many different ways to sample data; a data

sample could be either created online during the query
time [14,32,47,57] or built offline from past query work-
loads [2,3,5,11]. Consider our example citation query. A
uniform random-sampling scheme randomly selects a set of
papers from papers such that every paper has an equal
probability of selection. To answer queries with a highly
selective predicate or a group-by clause, prior works em-
ploy stratified-sampling [1,3,32], which performs a uniform
random sampling scheme in each group, to guarantee that
every group has a large enough sample size to estimate a
good result. The approaches presented in this paper can
support both uniformly random samples and stratified sam-
ples. However, for simplicity, we present our analysis with
uniform samples.

Answering queries on a sample has an inherent uncer-
tainty since a different sample may yield a different result.
Quantifying this uncertainty has been extensively studied
in statistics [43]. Due to this uncertainty, we return confi-
dence intervals in addition to results. For example, given
a confidence probability (e.g., 95%), we can apply results
from sampling statistics to estimate the average number of
citations along with a confidence interval (e.g. ±10), which
means that the estimated average number is within ±10 of
the actual value with 95% probability. The confidence in-
terval quantifies the uncertainty introduced by sampling the
data.

2.2 Data Error
In this work, we focus on three types of data errors: value

error, condition error, and duplication error. We use our ex-
ample query to illustrate how these errors can affect results.

Value error: When an error occurs in the aggregation at-
tributes of the query (i.e. citation_count), it will lead to an
incorrect aggregate result. For example, consider the dirty
data in Figure 1(a). The first paper t1 involves value error
since its citation count should be 144 instead of 18.

Condition error: When an error occurs in the predicate or
group-by attribute of the query (i.e. pub_year), there may
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Figure 1: An example of dirty data and cleaned
sample (Shaded cells denote dirty values, and their
cleaned values are in bold font).

be some tuples that are falsely added into or excluded from
a group, leading to an incorrect result. In Figure 1(a), the
first paper t1 also has condition error since it was published
in the year 2011 rather than 11.

Duplication error: If data contains duplicate tuples (e.g.,
different representations of the same paper), the aggregate
result will also be affected. This type of error commonly
happens when the data is integrated from multiple sources.
For instance, in Figure 1(a), the third paper t3 has duplica-
tion error as it refers to the same paper as t10000.

While data cleaning can fix the data errors, cleaning the
entire data is usually time consuming, often requiring user
confirmation or crowdsourcing. For this reason, we have
developed the SampleClean framework.

2.3 SampleClean Framework
Figure 2 illustrates all of the components of our frame-

work. SampleClean first creates a random sample of dirty
data, and then applies a data-cleaning technique to clean
the sample. After cleaning the sample, SampleClean uses
the cleaned sample to answer aggregate queries. Sample-
Clean gives results that are unbiased which means in expec-
tation the estimates are equal to the query results if the
entire dataset was cleaned by the data-cleaning technique.

The SampleClean framework is independent of how sam-
ples are cleaned, and in this paper, we consider data cleaning
as a user-provided module. Specifically, for each tuple in the
sample, the cleaning module corrects the attribute values of
the tuple, and estimates the number of duplicates for the
tuple from the dirty data. For example, consider a sample,
S = {t1, t2, · · · , t7} of the dirty data in Figure 1(a). Fig-
ure 1(b) shows the corresponding cleaned sample. For the
first paper t1, we correct pub_year from 11 to 2011, correct
citation_count from 18 to 144, and identify two duplicate
papers (including t1 itself) in the dirty data.

2.3.1 Cleaning Value and Condition Errors
To reduce value errors and condition errors, the data-

cleaning technique only needs to clean attribute values in
the sample, and we can apply a variety of recently proposed
data cleaning techniques to achieve this. For example, out-
lier detection [31,35] and rule-based approaches [17,23] have
been proposed to solve this problem. In addition, Fan et
al. [24] proposed editing rules, master data and user con-
firmation to correct attribute values, and they proved that
their approaches can always obtain perfect cleaning results.
There are also some data-cleaning tools [19,46] that can fa-
cilitate users to clean data based on their domain knowledge.
For example, OpenRefine [46] allows users to define facets
on a per attribute basis, and helps them to quickly identify
incorrect attribute values via faceted search.

2.3.2 Identifying Duplicates
The SampleClean framework defines the duplicate factor

for a tuple as the number of times the tuple appears in the
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Figure 2: The SampleClean framework.

entire table. To determine it, one way would be to estimate
its value from the sample. However, both analytical proofs
and empirical tests have shown that this method can lead to
highly inaccurate query results [10]. Therefore, in our pa-
per, we determine the duplication factor from the complete
relation.

It is important to note, however, that compared to full
cleaning, we only need to determine the duplication factor
for those tuples in the sample. As with other uses of sam-
pling, this can result in significant cost savings in duplicate
detection. In the following, we will describe how to apply ex-
isting deduplication techniques to compute the duplication
factor, and explain why it is cheaper to determine the du-
plication factor for a sample of the data, even though doing
so requires access to the complete relation.

Duplicate detection (also known as entity resolution) aims
to identify different tuples that refer to the same real-world
entity. This problem has been extensively studied for several
decades [22]. Most deduplication approaches consist of two
phases:

1. Blocking. Due to the large (quadratic) cost of all-
pair comparisons, data is partitioned into a number
of blocks, and duplicates are considered only within a
block. For instance, if we partition papers based on
conference_name, then only the papers that are pub-
lished in the same conference will be checked for dupli-
cates;

2. Matching. To decide whether two tuples are duplicates
or not, existing techniques typically model this problem
as a classification problem, and train a classifier to la-
bel each tuple pair as duplicate or non-duplicate [9].
In some recent research (and also at many compa-
nies) crowdsourcing is used to get humans to match
tuples [20,54].

A recent survey on duplicate detection has argued that the
matching phase is typically much more expensive than the
blocking phase [13]. For instance, an evaluation of the popu-
lar duplicate detection technique [9] shows that the matching
phase takes on the order of minutes for a dataset of thou-
sands of tuples [39]. This is especially true in the context of
crowdsourced matching where each comparison is performed
by a crowd worker costing both time and money. Sample-
Clean reduces the number of comparisons in the matching
phase, as we only have to match each tuple in the sample
with the others in its block. For example, if we sample 1% of
the table, then we can reduce the matching cost by a factor
of 100.

2.3.3 Result Estimation
After cleaning a sample, SampleClean uses the cleaned

sample to estimate the result of aggregate queries. Simi-
lar to existing SAQP systems, we can estimate query results
directly from the cleaned sample. However, due to data er-
ror, result estimation can be very challenging. For example,

consider the avg(citation_count) query in previous section.
Assume that the data has duplication errors and that papers
with a higher citation count tend to have more duplicates.
The greater the number of duplicates, the higher probability
a paper is sampled, and thus the cleaned sample may con-
tain more highly cited papers, leading to an over-estimated
citation count. We formalize these issues and propose the
RawSC approach to address them in Section 3.

Another quantity of interest is how much the dirty data
differs from the cleaned data. We can estimate the mean
difference based on comparing the dirty and cleaned sam-
ple, and then correct a query result on the dirty data with
this estimate. We describe this alternative approach, called
NormalizedSC, and compare its performance with RawSC
in Section 4.

SampleClean v.s. SAQP: SAQP assumes perfectly clean
data while SampleClean relaxes this assumption and makes
cleaning feasible. In RawSC, we take a sample of data, ap-
ply a data cleaning technique, and then estimate the result.
The result estimation is similar to SAQP, however, we re-
quire a few additional scaling factors related to the clean-
ing. On the other hand, NormalizedSC is quite different
from typical SAQP frameworks. NormalizedSC estimates
the average difference between the dirty and cleaned data,
and this is only possible in systems that couple data clean-
ing and sampling. What is surprising about SampleClean
is that sampling a relatively small population of the overall
data makes it feasible to manually or algorithmically clean
the sample, and experiments confirm that this cleaning of-
ten more than compensates for the error introduced by the
sampling.

2.3.4 Example: SampleClean with OpenRefine
In this section, we will walk through an example imple-

mentation of SampleClean using OpenRefine [46] to clean
the data. Consider our example dirty dataset of publica-
tions in Figure 1(a). First, the user creates a sample of data
(e.g., 100 records) and loads this sample into the OpenRefine
spreadsheet interface. The user can use the tool to detect
data errors such as missing attributes, and fill in the cor-
rect values (e.g., from another data source or based on prior
domain expertise). Next, for deduplication, the system will
propose potential matches for each publication in the sam-
ple based on a blocking technique and the user can accept
or reject these matches. Finally, the clean sample with the
deduplication information is loaded back into the dataset.
In this example, sampling reduces the data cleaning effort
for the user. The user needs to inspect only 100 records in-
stead of the entire dataset, and has no more than 100 sets
of potential duplicates to manually check.

To query this clean sample, we need to apply Sample-
Clean’s result estimation to ensure that the estimate remains
unbiased after cleaning since some records may have been
corrected, or marked as duplicates. In the rest of the paper,
we discuss the details of how to ensure unbiased estimates,
and how large the sample needs to be to get a result of
acceptable quality.

3. RawSC ESTIMATION
In this section, we present the RawSC estimation ap-

proach. RawSC takes a sample of data as input, applies
a data cleaning technique to the sample, runs an aggregate
query directly on the clean sample, and returns a result with
a confidence interval.

3.1 Sample Estimates
We will first introduce the estimation setting without data

errors and explain some results about estimates from sam-



pled data. We start with the table of N tuples which we call
P , the population. From P , we sample a subset S of size K
uniformly; that is, every tuple is sampled with equal proba-
bility. In this setting, we have two problems: (1) Estimate
an aggregate query result on the sample S; (2) Quantify the
uncertainty of the query result.

Consider a simpler problem; suppose we want to estimate
the mean value of P . We can calculate the mean of S and the
Central Limit Theorem (CLT) states that these estimates
follow a normal distribution:

N(mean(P ),
var(P )

K
) (1)

Since the estimate is normally distributed, we can define a
confidence interval parametrized by λ (e.g., 95% indicates
λ = 1.96)1.

mean(S)± λ

√
var(S)

K
. (2)

This interval has two interpretations: (1) if we re-compute
the mean value on another random sample, the result will be
within the confidence interval with the specified probability,
and (2) the true value mean(P ) is within the confidence inter-
val with the specified probability. Furthermore, we call this
estimate unbiased since the expected value of the estimate
is equal to the true value.

Our primary focus is answering avg, count, and sum
queries with predicates2 (see [25] for other queries). We
can estimate these queries by re-formulating them as mean
value calculations. We first define some notation:

• f(·): a function representing any of the supported ag-
gregate queries with a predicate.

• Predicate(t): the predicate of the aggregate query,
where Predicate(t) = 1 or 0 denotes t satisfies or dis-
satisfies the predicate, respectively.

• K: the number of tuples in the sample.

• Kpred: the number of tuples that satisfy the predicate
in the sample.

• t[a]: the aggregation-attribute value. If it is clear from
the context that t refers to an attribute value rather
than a tuple, we will omit ‘[a]’ for brevity.

We can reformulate all of the queries as calculating a mean
value so we can estimate their confidence intervals with the
CLT:

f(S) =
1

K

∑
t∈S

φ(t) (3)

where φ(·) expresses all of the necessary scaling to translate
the query into a mean value calculation:

• count: φ(t) = Predicate(t) ·N
• sum: φ(t) = Predicate(t) ·N · t[a]

• avg: φ(t) = Predicate(t) · K
Kpred

· t[a]

For example, the avg query is estimated from the sample as:

avg(S) =
1

Kpred

∑
t∈S

Predicate(t) · t[a], (4)

which computes the average value of the tuples that satisfy
the predicate in the sample. In order to represent avg(S)

1
When estimating means of finite population there is a finite popu-

lation correction factor of FPC = N−K
N−1 which scales the confidence

interval.
2
Group-by queries can be implemented by adding group-by keys into

predicates.

in the form of Equation 3, we rewrite it to the following
equivalent Equation:

avg(S) =
1

K

∑
t∈S

Predicate(t) · K

Kpred

· t[a]. (5)

Therefore, we have φ(t) = Predicate(t) · K
Kpred

· t[a] for the
avg query.

3.2 Unbiased Estimation with Data Errors
If we ignore data errors, the estimates described in the

previous section are unbiased. Suppose Pclean is the corre-
sponding clean population for the dirty data population P .
We are interested in estimating an aggregate query on Pclean.
However, since we do not have the clean data, we cannot di-
rectly sample from Pclean. We must draw our sample from
the dirty data P and then clean the sample.

The key question is whether running an aggregate query
on the cleaned sample is equivalent to computing the query
result on a sample directly drawn from the clean data. When
this is true, our estimate is unbiased, and we can derive
confidence intervals using the CLT. In the following section,
we explore this question on different types of data errors.
Our goal is to define a new function φclean(·), an analog to
φ(·), that corrects attribute values and re-scales to ensures
that the estimate remains unbiased.

Recall, that we model three types of errors: value error,
condition error, and duplication error. To correct the errors,
we can define two data cleaning primitive functions:

• Correct(t): for the tuple t return a tuple with correct
attribute values

• Numdup(t): for the tuple t return the number of times
that the tuple appears in the population P

3.2.1 Value and Condition Errors
Both value and condition errors are caused by incorrect

attribute values of the dirty data. These errors do not affect
the size of the population, i.e., |P | = |Pclean|. Furthermore,
correcting a value or condition error only affects an individ-
ual tuple. Consequently, if we apply the φ(·) to the corrected
tuple, we still preserve the uniform sampling properties of
the sample, S. In other words, the probability that a given
tuple is sampled is not changed by our correction of value
and condition errors, thus we define φclean(t) as:

φclean(t) = φ (Correct(t)) . (6)

Note that the φ(·) for an avg query is dependent on the
parameter Kpred. If we correct values in the predicate at-
tributes, we need to recompute Kpred in the cleaned sample.

3.2.2 Duplication Error
Since duplication errors affect multiple tuples and the size

of Pclean is different from the size of P , they do affect the uni-
formity of the sampling. The following example illustrates
the consequences of duplication errors:

Example 1. Consider a population P = {t1, t2, t′2} with
two distinct tuples, t1 and t2 (=t′2). If we draw samples of
size 2 from this population uniformly:

Pr({t1, t2}) =
1

3
, P r({t1, t′2}) =

1

3
, P r({t2, t′2}) =

1

3
.

Now, assume t1 = 1 and t2 = t′2 = 2. The expected mean
value over all random samples is 1

3
· 3

2
+ 1

3
· 3

2
+ 1

3
· 2 = 5

3
,

however the cleaned population is Pclean = {t1, t2} and its
mean value is actually 3

2
.



The duplicated data is more likely to be sampled and thus
be over-represented in the estimate of the mean. We can
address this with a weighted mean to reduce the effects of
this over-representation. Furthermore, we can incorporate
this weighting into φclean(·).

Specifically, if a tuple t is duplicated m = Numdup(t) times,
then it is m times more likely to be sampled, and we should
down weight it with a 1

m
factor compared to the other tuples

in the sample. We formalize this intuition with the following
lemma:

Lemma 1. Let P be a population with duplicated tuples.
Let S ⊆ P be a uniform sample of size K. For each ti ∈ S,
let mi denote its number of duplicates in P . (1) For sum and

count queries, applying φclean(ti) = φ(ti)
mi

yields an unbiased

estimate; (2) For an avg query, the result has to be scaled
by the duplication rate d = K

K′ , where K′ =
∑
i

1
mi

, so using

φclean(ti) = d · φ(ti)
mi

yields an unbiased estimate.

Proof sketch. We can interpret the population as a dis-
crete probability distribution, and the sample as drawing K
elements from this distribution. Since some elements are du-
plicated there is an increased probability of drawing these
elements. We reduce these effects by re-weighting the sam-
ples, which can be thought of as drawing fractional samples
(i.e., if we sample an element which is duplicated twice, we
cancel it out by treating it as sampling only half an ele-
ment). As a result, while we may draw K total samples,
the total number of fractional samples drawn (sum of the
weights) K′, may be different, so we have to scale the result
accordingly. See [25] for a detailed proof.

We apply this lemma to the following example:

Example 2. Consider the dirty data in Figure 1, P =
{t1, t2, · · · , t10000}, and the sample data, S = {t1, t2, t3, t4,
t5, t6, t7}. In this example, we assume the data only has
duplication error, and our goal is to estimate the average
citation count of all the papers in the data.

Firstly, we compute the duplication rate of the sample:

K∑
t∈S

1
Numdup(t)

=
7

1
2

+ 1
1

+ 1
2

+ 1
1

+ 1
1

+ 1
1

+ 1
3

= 1.31

Then, we apply φclean(·) to each paper t ∈ S. Specif-
ically, we divide its citation count by the number of du-
plicates and then multiple it by the duplication rate, i.e.,
φclean(S) = { 1.31·18

2
, 1.31·1569

1
, 1.31·298

2
, · · · , 1.31·687

3
}. For ex-

ample, the first paper’s citation count is 18 and it has two
duplicates, thus we have φclean(t1) = 1.31·18

2
.

Finally, we estimate the average citation count as the mean
of φclean(S).

3.2.3 Combinations of Errors
We can also address data with combinations of errors (e.g.,

duplicated tuples that also have incorrect values). Value and
condition errors affect a tuple’s values. Duplication errors
affect a tuple’s sampling probability. The two classes of
errors affect the tuple in different ways, and consequently,
we define a single function φclean(·) which can correct for all
three error types:

• count: φclean(t) = φ(Correct(t))
Numdup(t)

• sum: φclean(t) = φ(Correct(t))
Numdup(t)

• avg: φclean(t) = d · φ(Correct(t))
Numdup(t)

Table 1: φclean(·) for count, sum, and avg. Note that N
is the total size of dirty data (including duplicates).

Query φclean(·)
count Predicate(Correct(t)) ·N · 1

Numdup(t)

sum Predicate(Correct(t)) ·N · Correct(t)[a]
Numdup(t)

avg Predicate(Correct(t)) · dK
Kpred

· Correct(t)[a]
Numdup(t)

We plug φ(·) (as described in Section 3.1) into the above
equations, and obtain a more detailed form of φclean(t) as
shown in Table 1.

RawSC Estimation: We can now formulate the RawSC
estimation procedure, as follows:

1. Given a sample S and an aggregation function f(·)
2. Apply φclean(·) to each ti ∈ S and call the resulting set
φclean(S)

3. Calculate the mean µc, and the variance σ2
c of φclean(S)

4. Return µc ± λ
√

σ2
c
K

To summarize, we state that the RawSC approach gives
an unbiased estimate:

Theorem 1. Given an aggregation function f and a pop-
ulation P , where there are three types of errors: value, con-
dition, and duplication. Let S be a uniform sample S ⊆ P
of size K. Let φclean(S) be the set of tuples where φclean(·)
is applied to every tuple. Then the estimate on this sample
is given by:

mean (φclean(S)) =
1

K

∑
t∈S

φclean(t)

The estimate is an unbiased estimate of f(Pclean).

Proof sketch. We need to show that the aggrega-
tion φclean(S) is equivalent to the aggregation φ(Sclean).
Lemma 1 shows that this is true for duplication errors. We
further argued that with value errors and condition errors
φclean(S) = φ(Sclean). Finally, since duplication error correc-
tion and value/condition correction can be composed this is
true. As the mean of a uniform random sample of Pclean, this
is an unbiased estimate. See [25] for a detailed proof.

Consider the following end-to-end numerical example with
RawSC:

Example 3. Consider the sample data and the cleaning
results in Figure 3, and assume the data may involve three
types of errors. To estimate the query result, we need to
map each t ∈ S to a new value φclean(t). Since the sam-
ple contains seven papers, and t4 and t7 do not satisfy the
predicate, the scaling for predicates is K

Kpred
= 7

5
= 1.40.

As shown in Example 2, the duplication rate is d = 1.31.
After applying φclean(·) for avg query in Table 1 to each
sampled paper, we obtain the transformed sample data of
φclean(S) = {133, 2895, 275, 0, 197, 63, 0}. For example,
since t1 satisfies the predicate, and its correct citation count
is 144 and the number of duplicates is 2, we have φclean(t1) =
1.31 · 1.40 · 144

2
= 133. Similarly, as t4 does not satisfy the

predicate, we have φclean(t4) = 0. We calculate the mean µc

and the variance σ2
c of φclean(S), and return µc ± λ

√
σ2
c
K

as

the estimated average citation count, where λ is a constant
value derived from the user-specified confidence probability.
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Figure 3: The cleaning results for the sam-
ple S = {t1, t2, t3, t4, t5, t6, t7} w.r.t “SELECT
AVG(citation count) FROM papers WHERE
pub year>2000”. The values in bold font indi-
cate the changed values after data cleaning.

Remarks. (1) For an avg query, we can achieve tighter
confidence intervals by skipping the tuples that dissatisfy
the predicate instead of considering them as 0 values. The
reason for this is that the avg query has a scaling factor
r = K

Kpred
, which is a random variable itself. The confidence

intervals we present incorporate the additional variance of r,
but due to the skipping we can get estimates not affected by
that variance. (2) Algorithmically, we contrast RawSC from
SAQP with φclean(·) vs. φ(·), which makes it very convenient
to implement RawSC in an existing SAQP system.

4. NormalizedSC ESTIMATION
RawSC estimates a result directly on a clean sample of

data. The size of confidence intervals in the RawSC esti-
mate are function on the variance of the cleaned sample
var(φclean(S)) and the sample size K. This property im-
plies that the accuracy of RawSC is only dependent on the
cleaned values (independent of the magnitude of incorrect
values), and thus makes the technique robust to large errors.
This dependence may not be desirable in datasets where the
data itself has high variance or where errors are small in
magnitude.

This motivates the NormalizedSC approach, where we
take an existing aggregation of the data, estimate its differ-
ence from the true value, and then use the estimate to cor-
rect the existing aggregation. The resulting technique gives
us confidence intervals that are dependent on the variance
of the errors, which can allow us to estimate very accurately
on datasets where this variance is small. Furthermore, we
provide the same unbiased guarantees on NormalizedSC as
RawSC.

4.1 Estimating the Difference
Due to data errors, the result of the aggregation function f

on the dirty population P differs from the true result by ε:

f(P ) = f(Pclean) + ε

In the previous section, we derived a function φclean(·) for
RawSC estimation. We contrasted this function with φ(·)
which does not clean the data. Therefore, we can write:

f(P ) =
1

N

∑
t∈P

φ(t) f(Pclean) =
1

N

∑
t∈P

φclean(t) (7)

If we solve for ε, we find that:

ε =
1

N

∑
t∈P

(
φ(t)− φclean(t)

)
(8)

In other words, for every tuple t, we calculate how much
φclean(t) changes φ(t). For a sample S, we can construct the

set of differences between the two functions:

Q = {φ(t1)− φclean(t1), φ(t2)− φclean(t2), · · · , φ(tK)− φclean(tK)}

The mean difference is an unbiased estimate of ε, the dif-
ference between f(P ) and f(Pclean). We can subtract this
estimate from an existing aggregation of data to get an es-
timate of f(Pclean).

NormalizedSC Estimation We derive the NormalizedSC
estimation procedure, which corrects an aggregation result:

1. Given a sample S and an aggregation function f(·)
2. Apply φ(·) and φclean(·) to each ti ∈ S and call the set

of differences Q(S).

3. Calculate the mean µq, and the variance σq of Q(S)

4. Return (f(P )− µq)± λ
√

σ2
q

K

Similar to RawSC, we can prove that the result in unbi-
ased:

Theorem 2. Given an aggregation function f and a pop-
ulation P , where there are three types of errors: value, con-
dition, and duplication. Let S be a uniform sample S ⊆ P of
size K. Let Q be the set of tuples where q(t) = φ(t)−φclean(t)
is applied to every tuple. Then the estimate on this sample
is given by:

mean(Q) =
1

K

∑
t∈S

(
φ(t)− φclean(t)

)
is an unbiased estimate of the bias ε. It follows, that f(P )−ε
is an unbiased estimate of the result.

Proof sketch. We can apply the theory developed for
RawSC to the estimate of ε. Since it is unbiased, due to
the linearity of expectation the estimate f(P ) − ε is also
unbiased. See [25] for a detailed proof.

Consider the Example 3 discussed in the previous section.

Example 4. Based on the definition of φ(·) in Sec-
tion 3.1, we have

φ(S) = {0, 3661, 0, 0, 250, 2, 0}.

For example, as shown in Figure 3, since t1 does not satisfy
the predicate, we have φ(t1) = 0. Additionally, as t2 satisfies
the predicate, and its dirty citation is 1569 and the scaling
for predicates is K

Kpred
= 7

3
, we have φ(t2) = 7

3
·1569 = 3661.

Over the same data we apply φclean(·) (as shown in Exam-
ple 3)

φclean(S) = {133, 2895, 275, 0, 197, 63, 0},

we can obtain the difference between the two samples

Q(S) = {−133, 766, −275, 0, 53, −61, 0}.

We calculate the mean µq and the variance σ2
q of Q(S), and

return (f(P )− µq)± λ
√

σ2
q

K
.

4.2 NormalizedSC vs. RawSC
We compare RawSC and NormalizedSC on result accu-

racy and processing time. Both methods achieve unbiased
estimates, but may differ greatly in the accuracy (the size of
the confidence interval) of these estimates. The confidence

interval of NormalizedSC is given by ±λ
√
σ2
q/K and for

RawSC it is ±λ
√
σ2
c/K. Therefore, for a fixed sample size,

if σc ≥ σq, NormalizedSC will be more accurate. In cases
when either σc is large or σq is small, NormalizedSC can give



a result with narrower confidence intervals than RawSC. For
example, if we had no data errors then σq = 0 (a perfect
NormalizedSC estimate), but σc would still be non-zero as
it is the variance of the cleaned data. Conversely, the more
unpredictable (high variance in the difference between the
clean and dirty data) the error offset is, the worse Normal-
izedSC will perform.

In terms of processing time, NormalizedSC is very differ-
ent from RawSC as it needs to run an aggregation query on
the entire dataset. We highlight two situations that are not
affected by this additional processing. (1) When the time re-
quired to clean a sample is much larger than the time needed
to scan the entire dataset. (2) When the user has an existing
result on the dirty dataset and wants to assess how far away
it is from the true value. In these settings, we can maintain
results for both RawSC and NormalizedSC and return the
result with a tighter confidence interval.

The analysis in this section assumes that we can compute
an exact aggregation result on the dirty dataset. We can
also extend NormalizedSC by estimating the aggregate re-
sult based on a sample without accessing the entire data. In
this way, NormalizedSC requires less response time but may
lose some result accuracy. Interested readers are referred
to [25] for details.

5. EXPERIMENTS AND RESULTS
We conducted a set of experiments on real and synthetic

data to evaluate our framework. We designed our exper-
iments to evaluate the following characteristics: (1) Com-
paring RawSC with NormalizedSC by varying the amount
of each type of error (value, condition, duplication). (2)
Exploring the trade-off between result quality and cleaning
cost provided by RawSC and NormalizedSC. (3) Measuring
the required cleaning cost to achieve a certain accuracy by
varying data size. (4) Comparing with existing approaches
that either clean all of data or none of data. (5) Evaluating
our framework on real datasets.

5.1 Experimental Settings and Datasets
We evaluate the efficacy of our approach with the follow-

ing quantities: (1) Number of Cleaned Samples. The number
of tuples that are sampled and cleaned to produce an esti-
mate; (2) Error %. An error % of q% signifies that with 95%
probability the estimate is within ±q% of the true value.

We refer to our framework SampleClean as the one that
can dynamically choose the better result between Normal-
izedSC and RawSC. We compare SampleClean with existing
solutions that either clean none of the data (AllDirty) or
clean all of data (AllClean). To compare different types of
errors, we classify them by the error rate (the number of tu-
ples affected by the error) ranging from 0% (all of the tuples
clean) to 100% (all of the tuples dirty) for value, condition,
and duplication errors.

5.1.1 TPC-H Dataset
We generated a 1GB TPC-H benchmark3 dataset (6,001,199

Records in lineitem table). The lineitem table schema
simulates industrial purchase order records. We used this
dataset to model errors where the purchase orders were dig-
itized using optical character recognition (OCR). We denote
a value-error percentage a% as a% of digits in the database
were recognized as their most likely OCR false positive digit.
For condition errors, we simulated missing values by ran-
domly selecting p% of tuples and removing their predicate
attribute. We also randomly duplicated d% of tuples with
the following distribution: 80% one duplicate, 15% two du-
plicates, 5% three duplicates.

3
http://www.tpc.org/tpch

For this dataset, we experiment with avg, count, and sum
aggregations applied to this query:

SELECT f(quantity) FROM lineitem
WHERE returnflag = ‘A’ AND linestatus = ‘F’;

which finds aggregate quantities of purchases that satisfy
simulated conditions (returnflag = ‘A’ and linestatus = ‘F’).
In the clean data, there are 1,478,493 tuples satisfying the
conditions that corresponds to a 24.6% selectivity of this
query.

5.1.2 Microsoft Academic Search Dataset
Microsoft maintains a public database of academic publi-

cations4. The errors in this dataset are primarily duplicated
publications and mis-attributed publications. We selected
publications from three database researchers: Jeffrey Ull-
man, Michael Franklin, and Rakesh Agarwal. To clean a
sample of publications, we first manually removed the mis-
attributions in the sample. Then, we applied the technique
used in [54] to identify potential duplicates for all of pub-
lications in our sample, and manually examined the poten-
tial matches. For illustration purpose, we cleaned the entire
dataset, and showed the cleaning results in Table 2.

Table 2: Microsoft Academic Search Dataset.

Name Dirty Clean Pred % Dup
Rakesh Agarwal 353 211 18.13% 1.28

Jeffery Ullman 460 255 05.00% 1.65
Michael Franklin 560 173 65.09% 1.13

This table shows the difference between the reported num-
ber of publications (Dirty) and the number of publications
after our cleaning (Clean). We also diagnosed the errors and
recorded the duplication ratio (Dup) and the percentage of
mis-attributed papers (Pred). Both Rakesh Agarwal and
Michael Franklin had a large number of mis-attributed pa-
pers due to other authors with the same name (64 and 323
respectively). Jeffery Ullman had a comparatively larger
number of duplicated papers (182).

5.1.3 Sensor Dataset
We also applied our approach to a dataset of indoor tem-

perature, humidity, and light sensor readings in the Intel
Berkeley Research Lab. The dataset is publicly available
for data cleaning and sensor network research from MIT
CSAIL5. We selected one month of readings and aggregated
the values of all the sensors into a single aggregate reading
for each minute in the month. The resulting dataset had
44,460 sensor readings spaced one minute apart. We ap-
plied algorithmic cleaning techniques (as opposed to manual
cleaning) as described in [35] to a sample of data.

5.2 RawSC vs. NormalizedSC
We evaluated RawSC and NormalizedSC for a fixed

cleaned sample size, and for each type of error, we varied
the error percentage. This illustrates the regimes in which
our framework will have good performance since we can ap-
ply the more accurate of the two approaches. For all of our
TPC-H experiments, we cleaned a fixed set of 10,000 sam-
ples (0.17% of all tuples), and evaluated the performance on
the avg query.

In Figure 4(a), we explored avg queries on tuples with
only value errors. We find that NormalizedSC gives results
with narrower confidence intervals when the value errors are

4
http://academic.research.microsoft.com (Accessed Nov. 3, 2013)

5
http://db.csail.mit.edu/labdata/labdata.html
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Figure 4: Varying the amount of each type of error on the TPC-H dataset and measured the performance of
NormalizedSC vs. RawSC.
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Figure 5: Comparison of the convergence of the
methods on two TPC-H datasets of 6M tuples with
simulated errors (30% value, 10% condition, 20 %
duplication) and (3% value, 1% condition, 2% dupli-
cation). On the dataset with larger errors, we find
that RawSC gives a narrower confidence interval,
and on the other NormalizedSC is more accurate.

small. RawSC, on the other hand, is actually independent of
the value error rate as it only reports the aggregation of clean
data. Accordingly, since our framework dynamically chooses
the more accurate approach, we can give tight bounds for
datasets with higher and lower error rates.

We repeat the same experiment with condition errors in
Figure 4(b) and observed similar behavior. For small er-
ror rates, NormalizedSC gives a narrower confidence inter-
val than RawSC, but RawSC returns a result that is not
dependent on the rate of errors.

Figure 4(c) compares the avg query results of RawSC and
NormalizedSC on the data with duplication errors. Consis-
tent with all of our other experiments, NormalizedSC was
more accurate when there were a small number of dupli-
cates. A counter-intuitive result is that the estimation error
actually decreases after a point for both RawSC and Nor-
malizedSC. To better understand this phenomenon, suppose
every tuple had exactly one duplicate, then avg query would
be correct even on the dirty data.

5.3 Cleaning Cost v.s. Result Quality
We evaluated how the number of cleaned samples affects

the result error for RawSC and NormalizedSC. We ran the
avg query on the two TPC-H datasets that we considered
before: one where the percentages for each error type were
(30%,10%,20%), and one where each was (3%,1%,2%). Our
results are shown in Figure 5.

Both of the methods converge at a rate 1√
K

w.r.t. the sam-

ple size. We can easily estimate how many samples we need
to clean to achieve a specified error. Another key insight
is that since both converge at the same rate with respect
to the sample size, the lines will never cross. Consequently,
there will always be a single better choice between RawSC
and NormalizedSC, and we do not have to worry about our
choice being suboptimal for more cleaned samples.

In comparison to AllDirty, we can see both RawSC and
NormalizedSC achieved a better result by cleaning only a

small number of samples. Section 5.5 contains a more de-
tailed comparison with AllDirty and AllClean.

5.4 Scalability of Cleaning Cost
For both RawSC and NormalizedSC, we return confidence

intervals that are independent of the size of the dataset. In
terms of tuples cleaned, there is no difference between evalu-
ating our approach on a 1GB dataset or on a 1TB dataset. In
Figure 6, we show that if we simulate the 30%, 10%, 20% er-
rors in different sized TPC-H datasets (1GB, 10GB, 100GB,
1TB) as before, the number of cleaned tuples needed for a
certain accuracy remains roughly constant. Each dataset
was generated in the same way; the errors were simulated
from the same distribution. It underscores that the number
of samples needed to get a good estimate is a property of
the variance of the data and its errors.

Figure 6: Scalability of SampleClean on TPC-H
(30%,10%,20%) of different sizes. The number of
cleaned tuples needed to achieve a certain accuracy
does not increase with the size of the dataset.

5.5 End-to-End Experiment
We tested the end-to-end performance of the SampleClean

framework on a TPC-H dataset with small errors: 3% value,
2% duplication, and 1% condition errors. Under these er-
rors, we evaluated the avg, sum, and count aggregations and
compared the performance of our framework with AllClean
and AllDirty in terms of result quality and cleaning cost.
To process the queries (refer to Section 5.1.1), we uniformly
sampled from the dataset. Our results in Figure 7 suggest
that SampleClean quickly converges to the right answer, giv-
ing a flexible trade-off between tuples cleaned and the size
of the confidence interval in the estimate. We found that af-
ter cleaning only 1000 tuples (0.016%), we were to estimate
more accurately than AllDirty.

This was a dataset with small errors (mostly clean), and
we wanted to understand how SampleClean performs on a
much dirtier dataset. We repeated experiment under 30%
value, 20% duplication, and 10% condition errors (Figure 8).
On this dataset AllDirty differs from AllClean by 52% in
the avg function. The results in Figure 8 show that RawSC
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Figure 7: TPC-H evaluation with 3% Value Error, 1% Condition Error, 2% Duplication Error on 6M tuples.
Our technique can efficiently estimate on datasets with a small number of errors due to the trade-off between
RawSC and NormalizedSC.
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Figure 8: TPC-H evaluation with 30% Value Error, 10% Condition Errors, 20% Duplication Error on 6M
tuples. We find that even for a small number of cleaned samples, we can return results with high confidence.
We are able to achieve 95% accuracy after cleaning only 0.08% of the total samples.
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Figure 9: Imperfect Data Cleaning on TPC-H (30%, 10%, 20%) of 6M tuples. Even with a data cleaning
technique that is not always correct, we find that our results rapidly converge to the AllClean values. We
found that a 10% effective cleaning module can give more accurate results than AllDirty with a sample size
of 0.03% of the dataset.

still rapidly converges to the true values and outperforms
AllDirty. In addition, for all queries, our estimate is within
5% of AllClean after cleaning only 5000 tuples (0.08% of the
total data).

Due to the trade-off between NormalizedSC and RawSC,
we can estimate accurately for datasets that are both mostly
clean or very dirty. On the dataset with small errors, Nor-
malizedSC was the more accurate method and RawSC was
more accurate on one in the presence of larger errors.

5.6 Imperfect Data Cleaning
In Figure 9, we experimentally show that SampleClean is

valuable even when the cleaning is incomplete. We ran our
experiments on a dataset with 30% Value Errors, 10% Con-
dition Errors, and 20% Duplication Errors, and simulated a
data cleaning technique that can only identify and clean a
fixed percentage of errors. We compared the Error % of the
query and the total sample size including tuples where the
data cleaning failed.

Even though our estimates are now biased with respect
to the true values, they are still unbiased with respect to
AllClean. Consequently, we found that even if our clean-

ing technique can clean only 10% of the errors, we still only
have to sample 2,000 tuples to achieve a more accurate re-
sult than AllDirty. Furthermore, we can take advantage of
both RawSC and NormalizedSC. If a technique changes a
lot of the tuple values, then RawSC gives us a more precise
estimate. However, if a technique keeps most of the values
the same NormalizedSC is more precise.

5.7 Evaluation on Real Data
The following sections contain experiments on two real

datasets: Microsoft Academic Search and the Intel Lab Sen-
sors. As described in Section 5.1, they contain different
types of errors: the sensor dataset consists of predominantly
value and condition errors, and the publication dataset con-
sists of condition and duplication errors.

5.7.1 Microsoft Academic Search
We designed this experiment to be illustrative of assessing

the confidence of decisions based on dirty data, by trying to
get an accurate publication count for the three authors. We
can see that in Table 2 AllDirty not only returns incorrect
values but also returns an incorrect ranking of the three au-



0 50 100 150 200 250 300 350
0

100

200

300

400

500

600

700

(a) Number of Cleaned Samples

Q
u

e
ry

 R
e

s
u

lt

Rakesh Agarwal

 

 
AllDirty

AllClean

SampleClean  

0 50 100 150 200 250 300 350 400 450
0

100

200

300

400

500

600

700

(b) Number of Cleaned Samples

Q
u

e
ry

 R
e

s
u

lt

Jeffrey Ullman

 

 
AllDirty

AllClean

SampleClean  

0 100 200 300 400 500
0

100

200

300

400

500

600

700

(c) Number of Cleaned Samples

Q
u

e
ry

 R
e

s
u

lt

Michael Franklin

 

 

AllDirty

AllClean

SampleClean  

Figure 10: The output of our result estimation framework for each author. The dataset was particularly dirty
and cleaning only 50 tuples per author was sufficient to outperform an aggregation of the entire dataset.
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Figure 11: Even though AllDirty always returns an
incorrect ranking, we can return the correct rank-
ing with 95% probability after cleaning only 210 to-
tal samples. To achieve a correct ranking with 99%
probability, we require 326 samples to be cleaned.

thors. This is an example of a dataset where the data clean-
ing is quite well defined, we can apply our domain expertise
in database publications to reason about each tuple in the
dataset, but cleaning is very time consuming. In Figure 10,
we show how our approach can budget data cleaning for each
author up-to a desired query quality. We clearly see that our
estimates are centered around the AllClean value and even
with the confidence intervals outperform aggregations of the
full dirty data.

However, we do notice that the confidence intervals for
the estimated paper counts overlap for a small number of
cleaned samples. We evaluated how many tuples would need
to be cleaned to get an accurate ranking using a simulation;
that is if we re-ran the same experiment with the same sam-
ple size what is the probability our ordering of the authors is
accurate. For each author, we treat the estimate of their pa-
per count as a normally distributed random variable. From
these distributions, we sample 10000 paper counts and cal-
culate the empirical probability of an incorrect ordering. In
Figure 11, we show how we can return the correct ranking
with 95% probability after cleaning only 210 total samples.
To achieve a correct ranking with 99% probability, we re-
quire 326 samples to be cleaned. In comparison, AllDirty
always returns an incorrect ranking. SampleClean provides
a flexible way to achieve a desired confidence on decision
based on dirty data queries.

5.7.2 Sensor Dataset
The sensor dataset consists of readings from inexpensive

battery-operated sensors. The failure mode of these sen-
sors is returning incorrect readings, particularly when the
available battery power is low. We limited the dataset to a
single month where the readings from the beginning of the
month were largely accurate, while the readings from later
in the month became increasingly inaccurate. We cleaned

500 samples (1.12%) of the dataset using the algorithm de-
scribed in [35] and applied a variety of queries to illustrate
how different types of value and condition errors can affect
results (Figure 12).

Like the TCP-H results, this experiment shows how hav-
ing both RawSC and NormalizedSC helps us estimate ac-
curately in different error distributions. Surprisingly, we
found that different queries on the same dataset may have
very different error characteristics making the choice be-
tween RawSC and BiasCorrect very important. From this
experiment, we can also see the interactive latency capa-
bilities of SampleClean. Since we cleaned the 500 sampled
tuples, subsequent RawSC queries only need to operate on
the cleaned sample. This demonstrates how RawSC can give
a very fast response time on large datasets as it only has to
process the tuples in the cleaned sample.

The first two queries avg(temp) and avg(light) illustrate
the severity of the sensor errors. Simply taking an average
over the dirty data results in an estimate that differs from
AllClean by about 100%. However, for the cost of cleaning
only 500 samples, we are able to achieve a confidence inter-
val of ±1.5% and ±15.2% respectively. Due to the nature
of the sensor errors, a similar, but more dramatic, improve-
ment is seen for var(temp) and var(light). Random errors
such as ones generated by electronic sensors tend to increase
variance of the data, and we can see that our estimate for
var(temp) is three orders of magnitude closer to AllClean.

We also evaluated the queries with predicates. In the first
query, we looked at the average temperature when the hu-
midity was above 30%. For this query, there were both value
and condition errors. We also looked at the average temper-
ature when the predicate attribute (time) was accurate even
during sensor failures. We found that our technique works
well in both cases giving significant improvements over ag-
gregations of the dirty data.

Finally, we demonstrate a query where the errors are rela-
tively small. We counted the number of readings where the
temperature was above some threshold. We found that the
dirty aggregation was not very much worse than the confi-
dence intervals returned by our method. Furthermore, we
also experimented with the average temperature over the
first four days when most of the sensors were working. In
this query, AllDirty differed from AllClean by less than 1%.
In fact, AllDirty outperforms RawSC for 500 cleaned sam-
ples. However, due to our tradeoff between RawSC and
NormalizedSC, we are still able to improve on already good
estimates.

6. RELATED WORK
Approximate Query Processing: SAQP has been stud-
ied for more than two decades [16,26]. Many SAQP ap-
proaches [2,3,5,11,14,32,47,50,57] were proposed, aiming to
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Figure 12: Queries applied to the sensor dataset. We applied a set of queries with a fixed sample (same
for all queries) of 500 cleaned tuples. We compare the error percentage (log-scale) of AllDirty, RawSC, and
NormalizedSC with respect to AllClean. For all of these example queries, we are able to achieve a relative
error of less than ±10% even when the data error is orders of magnitude higher.

enable interactive query response times. There are also
many studies on creating other synopsis of the data, such
as histograms or wavelets [16]. While a substantial works
on approximate query processing, these works mainly focus
on how to deal with sampling errors, with little attention to
data errors.

Data Cleaning: There have been many studies on various
data-cleaning techniques, such as rule-based approaches [17,
23], outlier detection [18,31], filling missing values [48,52],
and duplicate detection [9,12]. In order to ensure reliable
cleaning results, most of these techniques require human in-
volvement [24,36,54,55,58]. In our paper, the main focus
is not on a specific data-cleaning technique, but rather on
a new framework that enables a flexible trade-off between
data cleaning cost and result quality. Indeed, we can apply
any data-cleaning technique to clean the sample data, and
then utilize our framework to estimate query results based
on the cleaned sample.

Result Estimation and Sampling: Estimating aggre-
gate statistics of populations from samples has been well
studied in the field of surveying [7,29,38,49,53,56]. These
works explore different types of sampling, error character-
izations, bias-variance trade-offs, and confidence intervals.
The theoretical foundation of surveying is statistical bound-
ing of functions of independent random variables (e.g., sam-
ples with replacement). This field includes distribution-
free bounds such as Markov/Chebyshev/Hoeffding bounds,
asymptotic bounds such as the Central Limit Theorem
(CLT), and empirical testing such as Bootstrapping [33].
For a detailed survey of different types of statistical bounds
refer to [28]. Due to the CLT’s strong guarantees (unbiased
sample estimates and normalcy), as in our work, it is widely
applied in the analysis of sampling schemes. The more gen-
eral study of sample estimators that are unbiased and have
asymptotically normal distributions (like the CLT) is called
U-Statistics, refer to [41] for a survey of this theory. The
stochastic process literature also discusses problems in un-
biased estimation from samples [34].

Distinct Value Estimation: Distinct value estimation has
been an open problem in stream processing and database re-
search [6,8,15,27]. Similar to our analysis, some have argued
that simply removing duplicates in a sample of data does not
work [10]. In the storage literature, similar weighted aver-
age techniques have been applied for global file duplication
rate estimation [30] based on the knowledge of duplication
rates within a sample. This work can be seen as a simplified
version of our problem only answering a count query with
only duplication errors. Techniques similar to our duplicate
reweighting scheme have been studied in estimating from
non-uniform samples [4], and is also similar to the accep-

tance ratio used sampling algorithms such as the Metropolis-
Hastings Algorithm and Rejection Sampling [42,45]. Fur-
ther relevant work includes sensitivity analysis of set func-
tions [37,44] and statistical information theory [40].

7. CONCLUSION AND FUTURE WORK
In this paper, we explore using sampling, integrated with

data cleaning, to improve answer quality. We propose Sam-
pleClean, a novel framework which only requires users to
clean a sample of data, and utilizes the cleaned sample to
obtain unbiased query results with confidence intervals. We
identify three types of data errors (i.e., value error, condition
error and duplication error) that may affect query results,
and develop NormalizedSC and RawSC to estimate query
results for the data with these errors. Our analysis and ex-
periments suggest that SampleClean, which returns the bet-
ter result between NormalizedSC and RawSC, is robust to
different magnitudes and rates of data errors, and consis-
tently reports good estimate results. Our experiments on
both real and synthetic data sets indicate that SampleClean
only needs to clean a small sample of the data to achieve
accurate results, and furthermore the size of this sample is
independent of the size of the dataset. In particular, RawSC,
which processes queries only on the cleaned sample, not only
makes the query processing more scalable, but surprisingly
may provide higher quality results than an aggregation of
the entire dirty data (AllDirty).

To the best of our knowledge, this is the first work to
marry data cleaning with sampling-based query processing.
There are many research directions for future exploration.

Constrained Queries: Now that we have quantified a
tradeoff between cleaning costs and result quality, we can
explore query results where users can specify a cost or qual-
ity constraint. For example, users may want to know that
given a cleaning budget, what is the best result quality they
can achieve? Or, given a quality constraint, how many sam-
ples they need clean to meet the constraint? In these con-
strained queries, we aim to answer with an optimal cost or
most accurate result to meet the constraints.

Uncertain Cleaning Results: Our framework can return
unbiased query results with respect to AllClean for a variety
of different data cleaning approaches. We are also interested
in how we can incorporate uncertain or probabilistic cleaning
processes into this framework. For example, given a dirty
record, could the data cleaning module specify a set of ranges
for each attribute? We are interested in what guarantees, if
any, we can achieve in such settings.

Complex SQL Queries: Another important avenue of
future work is to extend our framework to support more
complex SQL queries such as join and nested SQL queries.
There are some straightforward methods to implement these



queries. For example, we can materialize the join result as a
single table, and then apply our framework to the material-
ized table. But this could be very costly for large datasets,
thus we need to explore more efficient implementations. For
a larger set of queries, it may not be possible to estimate
their results with the CLT. Thus, exploring empirical esti-
mation approaches (such as bootstrapping) to our frame-
work is another interesting future direction.

Sample Maintenance: Finally, in real applications users
may create multiple samples from the data. Maintaining
these samples for data updates is also very challenging and
needs to be investigated.

Acknowledgements. The authors would like to thank Sameer
Agarwal, Bill Zhao, and the SIGMOD reviewers for their insight-
ful feedback. This research is supported in part by NSF CISE Ex-
peditions Award CCF-1139158, LBNL Award 7076018, DARPA
XData Award FA8750-12-2-0331, the European Research Coun-
cil under the FP7, ERC MoDaS, agreement 291071, and by the
Israel Ministry of Science, and gifts from Amazon Web Services,
Google, SAP, The Thomas and Stacey Siebel Foundation, Apple,
Inc., Cisco, Cloudera, EMC, Ericsson, Facebook, GameOnTalis,
Guavus, Hortonworks, Huawei, Intel, Microsoft, NetApp, Pivotal,
Samsung, Splunk, Virdata, VMware, WANdisco and Yahoo!.

8. REFERENCES
[1] S. Acharya, P. B. Gibbons, and V. Poosala. Congressional

samples for approximate answering of group-by queries. In
SIGMOD Conference, pages 487–498, 2000.

[2] S. Acharya, P. B. Gibbons, V. Poosala, and S. Ramaswamy.
The aqua approximate query answering system. In SIGMOD
Conference, pages 574–576, 1999.

[3] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden, and
I. Stoica. BlinkDB: queries with bounded errors and bounded
response times on very large data. In EuroSys, pages 29–42,
2013.

[4] A. Aldroubi. Non-uniform weighted average sampling and
reconstruction in shift-invariant and wavelet spaces. Applied
and Computational Harmonic Analysis, 13(2):151–161, 2002.

[5] B. Babcock, S. Chaudhuri, and G. Das. Dynamic sample
selection for approximate query processing. In SIGMOD
Conference, pages 539–550, 2003.

[6] Z. Bar-Yossef, T. Jayram, R. Kumar, D. Sivakumar, and
L. Trevisan. Counting distinct elements in a data stream. In
Randomization and Approximation Techniques in Computer
Science, pages 1–10. Springer, 2002.

[7] V. Barnett. Sample survey. Principles and method, 3, 1991.
[8] K. S. Beyer, P. J. Haas, B. Reinwald, Y. Sismanis, and

R. Gemulla. On synopses for distinct-value estimation under
multiset operations. In SIGMOD Conference, pages 199–210,
2007.

[9] M. Bilenko and R. J. Mooney. Adaptive duplicate detection
using learnable string similarity measures. In KDD, pages
39–48, 2003.

[10] M. Charikar, S. Chaudhuri, R. Motwani, and V. R. Narasayya.
Towards estimation error guarantees for distinct values. In
PODS, pages 268–279, 2000.

[11] S. Chaudhuri, G. Das, and V. R. Narasayya. Optimized
stratified sampling for approximate query processing. ACM
Trans. Database Syst., 32(2):9, 2007.

[12] P. Christen. Febrl: a freely available record linkage system
with a graphical user interface. In HDKM, pages 17–25, 2008.

[13] P. Christen. A survey of indexing techniques for scalable
record linkage and deduplication. IEEE Trans. Knowl. Data
Eng., 24(9):1537–1555, 2012.

[14] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, J. Gerth,
J. Talbot, K. Elmeleegy, and R. Sears. Online aggregation and
continuous query support in mapreduce. In SIGMOD
Conference, pages 1115–1118, 2010.

[15] J. Considine, F. Li, G. Kollios, and J. W. Byers. Approximate
aggregation techniques for sensor databases. In ICDE, pages
449–460, 2004.

[16] G. Cormode, M. N. Garofalakis, P. J. Haas, and C. Jermaine.
Synopses for massive data: Samples, histograms, wavelets,
sketches. Foundations and Trends in Databases, 4(1-3):1–294,
2012.

[17] M. Dallachiesa, A. Ebaid, A. Eldawy, A. K. Elmagarmid, I. F.
Ilyas, M. Ouzzani, and N. Tang. NADEEF: a commodity data
cleaning system. In SIGMOD Conference, pages 541–552, 2013.

[18] T. Dasu and T. Johnson. Exploratory data mining and data
cleaning. Wiley, 2003.

[19] DataWrangler. http://vis.stanford.edu/wrangler.
[20] G. Demartini, D. E. Difallah, and P. Cudré-Mauroux.
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