
MAY/JUNE 2007 THIS ARTICLE HAS BEEN PEER-REVIEWED. 21

IPython: A System for
Interactive Scientific Computing

P Y T H O N :
B A T T E R I E S I N C L U D E D

The backbone of scientific computing is
mostly a collection of high-perfor-
mance code written in Fortran, C, and
C++ that typically runs in batch mode

on large systems, clusters, and supercomputers.
However, over the past decade, high-level environ-
ments that integrate easy-to-use interpreted lan-
guages, comprehensive numerical libraries, and
visualization facilities have become extremely popu-
lar in this field. As hardware becomes faster, the crit-
ical bottleneck in scientific computing isn’t always the
computer’s processing time; the scientist’s time is also
a consideration. For this reason, systems that allow
rapid algorithmic exploration, data analysis, and vi-
sualization have become a staple of daily scientific
work. The Interactive Data Language (IDL) and
Matlab (for numerical work), and Mathematica and
Maple (for work that includes symbolic manipula-
tion) are well-known commercial environments of
this kind. GNU Data Language, Octave, Maxima
and Sage provide their open source counterparts.

All these systems offer an interactive command
line in which code can be run immediately, without
having to go through the traditional edit/com-
pile/execute cycle. This flexible style matches well
the spirit of computing in a scientific context, in
which determining what computations must be
performed next often requires significant work. An
interactive environment lets scientists look at data,
test new ideas, combine algorithmic approaches,
and evaluate their outcome directly. This process
might lead to a final result, or it might clarify how
they need to build a more static, large-scale pro-
duction code.

As this article shows, Python (www.python.org)
is an excellent tool for such a workflow.1 The
IPython project (http://ipython.scipy.org) aims to
not only provide a greatly enhanced Python shell
but also facilities for interactive distributed and par-
allel computing, as well as a comprehensive set of
tools for building special-purpose interactive envi-
ronments for scientific computing.

Python: An Open and General-
Purpose Environment
The fragment in Figure 1 shows the default inter-
active Python shell, including a computation with
long integers (whose size is limited only by the
available memory) and one using the built-in com-
plex numbers, where the literal 1j represents

.i = −1

Python offers basic facilities for interactive work and a comprehensive library on top of
which more sophisticated systems can be built. The IPython project provides an enhanced
interactive environment that includes, among other features, support for data visualization
and facilities for distributed and parallel computation.

FERNANDO PÉREZ

University of Colorado at Boulder
BRIAN E. GRANGER

Tech-X Corporation

1521-9615/07/$25.00 © 2007 IEEE

Copublished by the IEEE CS and the AIP

22 COMPUTING IN SCIENCE & ENGINEERING

This shell allows for some customization and ac-
cess to help and documentation, but overall it’s a
fairly basic environment.

However, what Python lacks in the sophistica-
tion of its default shell, it makes up for by being
a general-purpose programming language with
access to a large set of libraries with additional ca-
pabilities. Python’s standard library includes
modules for regular expression processing, low-
level networking, XML parsing, Web services,
object serialization, and more. In addition, hun-
dreds of third-party Python modules let users do
everything from work with Hierarchical Data
Format 5 (HDF5) files to write graphical appli-
cations. These diverse libraries make it possible
to build sophisticated interactive environments
in Python without having to implement every-
thing from scratch.

IPython
Since late 2001, the IPython project has provided
tools to extend Python’s interactive capabilities be-
yond those shipped by default with the language,
and it continues to be developed as a base layer for
new interactive environments. IPython is freely
available under the terms of the BSD license and
runs under Linux and other Unix-type operating
systems, Apple OS X, and Microsoft Windows.

We won’t discuss IPython’s features in detail
here—it ships with a comprehensive user manual
(also accessible on its Web site). Instead, we highlight
some of the basic ideas behind its design and how
they enable efficient interactive scientific computing.
We encourage interested readers to visit the Web site
and participate on the project’s mailing lists.

One of us (Fernando Pérez) started IPython as
a merger of some personal enhancements to the
basic interactive Python shell with two existing
open source projects (both now defunct and sub-
sumed into IPython):

• LazyPython, developed by Nathan Gray at Cal-
tech, and

• Interactive Python Prompt (IPP) by Janko
Hauser at the University of Kiel’s Institute of
Marine Research.

After an initial development period as a mostly
single-author project, IPython has attracted a
growing group of contributors. Today, Ville
Vainio and other collaborators maintain the sta-
ble official branch, while we’re developing a next-
generation system.

Since IPython’s beginning, we’ve tried to pro-
vide the best possible interactive environment for

everyday computing tasks, whether the actual work
was scientific or not. With this goal in mind, we’ve
freely mixed new ideas with existing ones from
Unix system shells and environments such as
Mathematica and IDL.

Features of a Good
Interactive Computing Environment
In addition to providing direct access to the un-
derlying language (in our case, Python), we con-
sider a few basic principles to be the minimum
requirements for a productive interactive comput-
ing system.

Access to all session state. When working interac-
tively, scientists commonly perform hundreds of
computations in sequence and often might need to
reuse a previous result. The standard Python shell
remembers the very last output and stores it into a
variable named “_” (a single underscore), but each
new result overwrites this variable. IPython stores
a session’s inputs and outputs into a pair of num-
bered tables called In and Out. All outputs are also
accessible as _N, where N is the number of results
(you can also save a session’s inputs and outputs to
a log file). Figure 2 shows the use of previous re-
sults in an IPython session. Because keeping a very
large set of previous results can potentially lead to
memory exhaustion, IPython lets users limit how
many results are kept. Users can also manually
delete individual references using the standard
Python del keyword.

A control system. It’s important to have a secondary
control mechanism that is reasonably orthogonal

$ python # $ represents the system prompt

Python 2.4.3 (Apr 27 2006, 14:43:58)

[GCC 4.0.3 (Ubuntu 4.0.3-1ubuntu5)] on linux2

Type “help”, “copyright”, “credits” or “license”

for more information.

>>> pprriinntt “This is the Python shell.”

This is the Python shell.

>>> 2**45+1 # long integers are built-in

35184372088833L

>>> iimmppoorrtt cmath # default complex math library

>>> cmath.exp(–1j*cmath.pi)

(–1–1.2246063538223773e-16j)

Figure 1. Default interactive Python shell. In the two computations
shown—one with long integers and one using the built-in complex
numbers—the literal 1j represents . i = −1

MAY/JUNE 2007 23

to the underlying language being executed (and in-
dependent of any variables or keywords in the lan-
guage). Even programming languages as compact
as Python have a syntax that requires parentheses,
brackets, and so on, and thus aren’t the most con-
venient for an interactive control systems.

IPython offers a set of control commands (or
magic commands, as inherited from IPP) designed
to improve Python’s usability in an interactive con-
text. The traditional Unix shell largely inspires the
syntax for these magic commands, with white
space used as a separator and dashes indicating op-
tions. This system is accessible to the user, who
can extend it with new commands as desired.

The fragment in Figure 3 shows how to activate
IPython’s logging system to save the session to a
named file, requesting that the output is logged
and every entry is time stamped. IPython auto-
matically interprets the logstart name as a call
to a magic command because no Python variable
with that name currently exists. If there were such
a variable, typing %logstart would disambiguate
the names.

Operating system access. Many computing tasks
involve working with the underlying operating
system (reading data, looking for code to execute,
loading other programs, and so on). IPython lets
users create their own aliases for common system
tasks, navigate the file system with familiar com-
mands such as cd and ls, and prefix any command
with ! for direct execution by the underlying OS.
Although these are fairly simple features, in prac-
tice they help maintain a fluid work experience—
they let users type standard Python code for
programming tasks and perform common OS-
level actions with a familiar Unix-like syntax.
IPython goes beyond this, letting users call system
commands with values computed from Python
variables. These features have led some users (es-
pecially under Windows, a platform with a very
primitive system shell) to use IPython as their de-
fault shell for everyday work.

Figure 4 shows how to perform the simple task
of normalizing the names of a few files to a differ-
ent convention.

Dynamic introspection and help. One benefit of
working interactively is being able to directly ma-
nipulate code and objects as they exist in the run-
time environment. Python offers an interactive
help system and exposes a wide array of introspec-
tive capabilities as a standard module (inspect.
py) that provides functions for exploring various
types of objects in the language.

IPython offers access to Python’s help system,
the ability to complete any object’s names and at-
tributes with the Tab key, and a system to query an
object for internal details, including source code,

$ ipython

Python 2.4.3 (Apr 27 2006, 14:43:58)

Type “copyright”, “credits” or “license” for more

information.

IPython 0.7.3 — An enhanced Interactive Python.

? –> Introduction to IPython features.

%magic –> Information about IPython magic %

functions.

Help –> Python help system.

object? –> Details about object. ?object also

works, ?? prints more.

In [1]:2**45+1

Out[1]:35184372088833L

In [2]:iimmppoorrtt cmath

In [3]:cmath.exp(–1j*cmath.pi)

Out[3]:(–1–1.2246063538223773e–16j)

The last result is always stored as '_'

In [4]:_ ** 2

Out[4]:(1+2.4492127076447545e–16j)

And all results are stored as N, where _N is

their number:

In [5]:_3+_4

Out[5]:1.2246063538223773e–16j

Figure 2. The use of previous results in an IPython session. In
IPython, all outputs are also accessible as _N, where N is the number
of results.

In [2]: logstart –o –t ipsession.log

Activating auto–logging. Current session state

plus future input saved.

Filename : ipsession.log

Mode : backup

Output logging : True

Raw input log : False

Timestamping : True

State : active

Figure 3. Activating IPython’s logging system to save the session to
a named file. IPython interprets the logstart name as a call to a
control command (or magic command).

24 COMPUTING IN SCIENCE & ENGINEERING

by typing the object’s name and one or two “?”
(two for extra details). These features are useful
when developing code, exploring a problem, or us-
ing an unfamiliar library because direct experi-
mentation with the system can help produce
working code that the user can then copy into an
editor as part of a larger program.

Figure 5 shows the information returned by
IPython after querying an object called
DeepThought from a module called universe. In
line 2, we’ve hit the Tab key, so IPython com-
pletes a list of all the attributes defined for
DeepThought. Then, for the sequence
DeepThought??, IPython tries to find as much
information about the object as it can, including
its entire source code.

Access to program execution. Although typing
code interactively is convenient, large programs
are written in text editors for significant compu-
tations. IPython’s %run magic command lets users
run any Python file within the IPython session as
if they had typed it interactively. Upon comple-
tion, the program results update the interactive
session, so the user can further explore any quan-
tity computed by the program, plot it, and so on.
The %run command has several options to assist
in debugging, profiling, and more. It’s probably
the most commonly used magic function in a typ-
ical workflow: you use a text editor for significant
editing while code is executed (using run) in the
IPython session for debugging and results analy-
sis. Typing run? provides full details about the
run command.

Figure 6 compares IPython to the default
Python shell when running a program that con-
tains errors. IPython provides detailed exception
tracebacks with information about variable values,
and can activate a debugger (indicated by the
ipdb> prompt), from which a user can perform
postmortem analysis of the crashed code from its
in-memory state, walk up the call stack, print vari-
ables, and so on. This mechanism saves time dur-
ing development, because the user doesn’t need to
reload libraries used by a program for each new
test. It also lets the user perform expensive ini-
tialization steps only once, keeping them in mem-
ory while the user explores other parts of a
problem by making changes to code and running
it repeatedly.

A Base Layer for Interactive Environments
In addition to these minimal requirements,
IPython exposes its major components to the user
for modification and customization, making it a

In [36]: ls

tt0.dat tt1.DAT tt2.dat tt3.DAT

‘var = !cmd’ captures a system command into a

Python variable:

In [37]: files = !ls

==

[‘tt0.dat’, ‘tt1.DAT’, ‘tt2.dat’, ‘tt3.DAT’]

Rename the files, using uniform case and 3-digit

numbers:

In [38]: ffoorr i, name iinn enumerate(files):

....: newname = ‘time%03d.dat’ % i

....: !mv $name $newname

....:

In [39]: ls

time000.dat time001.dat time002.dat time003.dat

Figure 4. Normalizing file names to a different convention. These
code fragments show how IPython allows users to combine normal
Python syntax with direct system calls (prefixed with the “!”
character). In such calls, Python variables can be expanded by
prefixing them with “$.”

In [1]:ffrroomm universe iimmppoorrtt DeepThought

In [2]:DeepThought. # Hit the Tab key here

DeepThought._doc_ DeepThought.answer

DeepThought.question

DeepThought._module_ DeepThought.name

In [2]:DeepThought??

Type: classobj

String Form: universe.DeepThought

Namespace: Interactive

File: /tmp/universe.py

Source:

ccllaassss DeepThought:

name = “Deep Thought”

question = None

ddeeff answer(self):

“””Return the Answer to The Ultimate

Question Of Life, the Universe and Everything”””

rreettuurrnn 42

Figure 5. Information returned by IPython after querying an
object called DeepThought from a module called universe.
When the user hits the Tab key (line 2), IPython lists all attributes
defined for DeepThought. For the sequence DeepThought??,
IPython finds as much information about the object as it can,
including its source code.

MAY/JUNE 2007 25

flexible and open platform. Other scientific com-
puting projects have used IPython’s features to
build custom interactive environments. A user can
declare these customizations in a plaintext file—an
IPython profile—and load them using the –profile
flag at startup time.

Input syntax processing. Underlying IPython is a
running Python interpreter, so ultimately all code
executed by IPython must be valid Python code.
However, in some situations the user might want
to allow other forms of input that aren’t necessar-
ily Python. Such uses can range from simple trans-
formations for input convenience to supporting a
legacy system with its own syntax within the
IPython-based environment.

As a simple example, IPython ships with a
physics profile, which preloads physical unit sup-
port from the ScientificPython library (http://
sourcesup.cru.fr/projects/scientific-py), and in-
stalls a special input filter. This filter recognizes
text sequences that appear to be quantities with
units and generates the underlying Python code
to define an object with units, without the user
having to type out the more verbose syntax, as
Figure 7 shows.

IPython exposes the input filtering system, which
users can customize to define arbitrary input trans-
formations that might suit their problem domains.
For example, the Software for Algebra and Geom-
etry Experimentation (Sage)2 project uses an input
filter to transform numerical quantities into exact
integers, rationals, and arbitrary precision floats in-
stead of Python’s normal numerical types. (See the
“Projects Using IPython” sidebar for a description
of this and other examples.)

Error handling. A common need in interactive en-
vironments is to process certain errors in a special
manner. IPython offers three exception handlers
that treat errors uniformly, differing only in the
amount of detail they provide. A custom environ-
ment might want to handle internal errors, or er-
rors related to certain special objects, differently
from other normal Python errors. IPython lets
users register exception handlers that will fire when
an exception of their registered type is raised.
Python’s uniform and object-oriented approach to
errors greatly facilitates this feature’s implementa-
tion: because all exceptions are classes, users can
register handlers based on a point in the class hier-
archy that will handle any exception that inherits
from the registered class. The PyRAF interactive
environment at the Space Telescope Science Insti-
tute has used this capability to handle its own in-

ternal errors separately from errors that are mean-
ingful to the user.

Tab completion. Tab completion is a simple but
useful feature in an interactive environment be-
cause the system completes not only on Python
variables but also on keywords, aliases, magic com-
mands, files, and directories. IPython lets users
register new completers to explore certain objects.

(a) (b)

Figure 6. Comparison of IPython to the default Python shell.
(a) IPython provides detailed error information and can
automatically activate an interactive debugger to inspect the
crashed code’s status, print variables, navigate the stack, and so on.
(b) The same error displayed in the default Python shell.

In [1]: mass = 3 kg

In [2]: g = 9.8 m/s^2

In [3]: weight=mass*g

In [4]: weight

Out[4]: 29.4 m*kg/s^2

We can see the actual Python code generated by

IPython:

In [5]: %history # %history is an IPython “magic”

command

1: mass = PhysicalQuantityInteractive(3, ‘kg’)

2: g = PhysicalQuantityInteractive(9.8, ‘m/s**2’)

3: weight=mass*g

4: weight

Figure 7. Code using IPython’s physics profile and input filter. The
filter recognizes text sequences that appear to be quantities with
units and generates the underlying Python code to define an object
with units.

26 COMPUTING IN SCIENCE & ENGINEERING

The PyMAD project at the neutron scattering fa-
cility of the Institut Laue Langevin in Grenoble,
France, uses this feature for interactive control of
experimental devices. The IPython console runs
on a system that connects to the neutron spec-
trometer over a network, but users interact with
the remote system as if it were local, and Tab com-
pletion operates over the network to fetch infor-
mation about remote objects for display in the
user’s local console.

Graphical Interface Toolkits and Plotting
Python provides excellent support for GUI toolk-
its. It ships by default with bindings for Tk, and
third-party bindings are available for GTK,
WxWidgets, Qt, and Cocoa (under Apple OS X).
You can use essentially every major toolkit to
write graphical applications from Python. Al-
though few scientists look forward to GUI design,
they increasingly have to write small- to medium-
sized graphical applications to interface with sci-
entific code, drive instruments, or collect data.
Python lets scientists choose the toolkit that best
fits their needs.

However, graphical applications are notoriously
difficult to test and control from an interactive
command line. In the default Python shell, if a user
instantiates a Qt application, for example, the com-
mand line stops responding as soon as the Qt win-

dow appears. IPython addresses this problem by of-
fering special startup flags that let users choose
which toolkit they want to control interactively in
a nonblocking manner.

This feature is necessary for one of scientists’
most common tasks: interactive data plotting and
visualization. Many traditional plotting libraries
and programs have Python bindings or process-
based interfaces, but most have various limitations
for interactive use. The matplotlib project (http://
matplotlib.sourceforge.net) is a sophisticated plot-
ting library capable of producing publication-qual-
ity graphics in a variety of formats, and with full
LaTeX support.3 Matplotlib renders its plots to
several back ends, the components responsible for
generating the actual figure. Some back ends (such
as for PostScript, PDF, and Scalable Vector Graph-
ics) are purely disk-based and meant to generate
files; others are meant for display in a window.
Matplotlib supports all these toolkits, letting users
choose which to use via a configuration file setting.
(The Scientific Programming department on p. 90
explores matplotlib in more detail.)

IPython and matplotlib developers have collab-
orated to enable automatic coordination between
the two systems. If given the special –pylab startup
flag, for example, IPython detects the user’s mat-
plotlib settings and automatically configures itself
to enable nonblocking interactive plotting. This

PROJECTS USING IPYTHON

S everal scientific projects have exploited IPython as a plat-
form rather than as an end-user application. Although

the vast majority of IPython users do little customization be-
yond setting a few personal options, these projects show
that there is a real use case for open, customizable interac-
tive environments in scientific computing:

• Sage (http://modular.math.washington.edu/sage), a sys-
tem for mathematical research and teaching with a focus
on algebra, geometry, and number theory, uses IPython
for its interactive terminal-based interface.

• The Space Telescope Science Institute’s PyRAF environ-
ment (www.stsci.edu/resources/software_hardware/pyraf)
uses IPython for astronomical image analysis. PyRAF pro-
vides an IPython-based shell for interactive work with sev-
eral special-purpose customizations. We made numerous
enhancements to IPython based on requests and sugges-
tions from the PyRAF team.

• The National Radio Astronomy Observatory’s Common
Astronomy Software Applications (CASA, http://casa.

nrao.edu) uses IPython in its interactive shell.
• The Ganga system (http://ganga.web.cern.ch/ganga/),

developed at the European Center for Nuclear Research
(CERN) for grid job control for the large hadron collider
beauty experiment (LHCb) and Atlas experiments, uses
IPython for its command-line interface (CLIP).

• The PyMAD project (http://ipython.scipy.org/moin/
PyMAD) uses IPython to control a neutron spectrometer
at CEA-Grenoble and the Institut Laue Langevin in France.

• The Pymerase project (http://pymerase.sourceforge.net)
for microarray gene expression databases exposes an
IPython shell in its interactive iPymerase mode.

Based on the lessons learned from this usage, we’re cur-
rently restructuring IPython to allow interactive parallel and
distributed computing, to build better user interfaces, and
to provide more flexible and powerful components for
other projects to build on. We hope that if more projects
are developed on top of such a common platform, all users
will benefit from the familiarity of having a well-known
base layer on top of which their specific projects add cus-
tom behavior.

MAY/JUNE 2007 27

provides an environment in which users can per-
form interactive plotting in a manner similar to
Matlab or IDL but with complete flexibility in the
GUI toolkit used (these programs provide their
own GUI support and can’t be integrated in the
same process with other toolkits).

In the example in Figure 8, plots are generated
from an interactive session using matplotlib. We
use the special function and numerical integration
routines provided by the SciPy package4 to verify,
at a few points, the standard relation for the first
Bessel function

.

The last line shows matplotlib’s capabilities for ar-
ray plotting with a simple 32 � 32 set of random
numbers.

Although matplotlib’s main focus is 2D plotting,
several packages exist for 3D plotting and visual-
ization in Python. The Visualization Toolkit
(VTK) is a mature and sophisticated visualization
library written in C++ that ships with Python bind-
ings. Recently, developers have introduced a new
set of bindings called Traits-enabled VTK
(TVTK),5 which provides seamless integration
with the NumPy array objects and libraries as well
as a higher-level API for application development.
Figure 9 shows how to use TVTK interactively
from within an IPython session. Because matplotlib
has WXPython support, you can use both TVTK
and matplotlib concurrently from within IPython.

Interactive Parallel
and Distributed Computing
Although interactive computing environments
can be extremely productive, they’ve traditionally
had one weakness: they haven’t been able to take
advantage of parallel computing hardware such as
multicore CPUs, clusters, and supercomputers.
Thus, although scientists often begin projects us-
ing an interactive computing environment, at
some point they switch to using languages such as
C, C++, and Fortran when performance becomes
critical and the projects call for parallelization. In
recent years, several vendors have begun offering
distributed computing capabilities for the major
commercial technical computing systems (see the
“Distributed Computing Toolkits for Commer-
cial Systems” sidebar for some examples). These
provide various levels of integration between the
computational back ends and interactive front
ends. An early precursor to these systems, whose
model was one of full interactive access to the

computational nodes, is ParGAP (www.ccs.neu.
edu/home/gene/pargap.html), a parallel-enabled
version of the open source package Groups, Al-
gorithms, and Programming (GAP) for computa-
tional group theory.

In the Python world, several projects also exist
that seek to add support for distributed computing.
The Python-community-maintained wiki keeps a
list of such efforts (http://wiki.python.org/moin/
ParallelProcessing). Of particular interest to scien-
tific users, Python has been used in parallel com-
puting contexts both with the message-passing
interface (MPI, http://sourceforge.net/projects/
pympi; http://mpi4py.scipy.org)6,7 and the Bulk

J x x d0 0

1
() cos sin= ()∫π

φ φ
π

Figure 8. IPython using the –pylab flag to enable interactive use of
the matplotlib library. Plot windows can open without blocking the
interactive terminal, using any of the GUI toolkits supported by
matplotlib (Tk, WxWidgets, GTK, or Qt).

Figure 9. An IPython session showing a 3D plot done with TVTK.
The GUI toolkit used is WXPython, so IPython is started with the
-wthread flag.

28 COMPUTING IN SCIENCE & ENGINEERING

Synchronous Parallel8 models.
Building on Python’s and IPython’s strengths as

an interactive computing system, we’ve begun a
significant effort to add interactive parallel and dis-
tributed capabilities to IPython. More specifically,
our goal is to enable users to develop, test, debug,
execute, and monitor parallel and distributed ap-
plications interactively using IPython. To make this
possible, we’ve refactored IPython to support these
new features. We’ve deliberately built a system
whose basic components make no specific assump-
tions about communications models, data distrib-
ution, or network protocols. The redesigned
IPython consists of

• the IPython core, which exposes IPython’s core
functionality, abstracted as a Python library
rather than as a terminal-based application;

• the IPython engine, which exposes the IPython
core’s functionality to other processes (either lo-
cal to the same machine or remote) over a stan-
dard network connection; and

• the IPython controller, which is a process that ex-
poses a clean asynchronous interface for work-
ing with a set of IPython engines.

With these basic components, specific models of
distributed and parallel computing can be imple-
mented as user-visible systems. Currently, we sup-
port two models out of the box: a load-balancing
and fault-tolerant task-farming interface for coarse-

grained parallelism, and a lower-level interface that
gives users direct interactive access to a set of run-
ning engines. This second interface is useful for
both medium- and fine-grained parallelism that
uses MPI for communications between engines.
Most importantly, advanced users and developers
can use these components to build customized in-
teractive parallel/distributed applications in
Python. End users work with the system interac-
tively by connecting to a controller using a Web
browser, an IPython- or Python-based front end,
or a traditional GUI.

Specific constraints that are relevant in scientific
computing guided this design:

• It should support many different styles of paral-
lelism, such as message passing using MPI, task
farming, and shared memory.

• It should run on everything from multicore lap-
tops to supercomputers.

• It should integrate well with existing parallel
code and libraries written using C, C++, or For-
tran, and MPI for communications.

• All network communications, events, and error
handling should be fully asynchronous and
nonblocking.

• It should support all of IPython’s existing fea-
tures in parallel contexts.

The architectural requirements for running
IPython in a distributed manner are similar to
those required for decoupling a user front end from
a computational back end. Therefore, this restruc-
turing effort also lets IPython offer new types of
user interfaces for remote and distributed work,
such as a Web browser-based IPython GUI and
collaborative interfaces that enable multiple remote
users to simultaneously access and share running
computational resources and data.

The first public release of these new
components was in late 2006. While it
should still be considered under heavy
development and subject to changes,

we’ve already been contacted by several projects
that have begun using it as a tool in production
codes. Details about this work are available on the
IPython Web site.

Acknowledgments
IPython wouldn’t be where it is today if it weren’t for its
user community’s contributions. Over the years, users
have sent bug reports, ideas, and often major portions of
new code. Some of the more prolific contributors have

DISTRIBUTED COMPUTING

TOOLKITS FOR COMMERCIAL SYSTEMS

S ome vendors offer distributed computing capabilities for the ma-
jor commercial technical computing systems:

• Matlab Distributed Computing Toolbox, www.mathworks.com/
products/distribtb.

• FastDL, www.txcorp.com/products/FastDL.
• Mathematica Parallel Computing Toolkit, http://documents.

wolfram.com/applications/parallel.
• Mathematica Personal Grid Edition, www.wolfram.com/products/

personalgrid.
• Grid Mathematica, www.wolfram.com/products/gridmathematica.
• HPC-Grid, www.maplesoft.com/products/toolboxes/HPCgrid.
• Star-P, www.interactivesupercomputing.com.

Other projects seek to support distributed computing using Python
(see http://wiki.python.org/moin/ParallelProcessing).

MAY/JUNE 2007 29

become codevelopers. As a Free Software project, it is only
because of such a community that it continues to
improve. We thank Ville Vainio for maintaining the stable
branch of the project, and Benjamin Ragan-Kelley for his
continued work as a key developer of IPython’s
distributed and parallel computing infrastructure.

This research was partially supported by US
Department of Energy grant DE-FG02-03ER25583 and
DOE/Oak Ridge National Laboratory grant 4000038129
(F. Pérez) and by Tech-X Corporation (B. Granger). We
thank Enthought for the hosting and infrastructure
support it has provided to IPython over the years.

References
1. T.-Y.B. Yang, G. Furnish, and P.F. Dubois, “Steering Object-Ori-

ented Scientific Computations,” Proc. Technology of Object-Ori-
ented Languages and Systems (TOOLS), IEEE CS Press, 1998, pp.
112–119.

2. W. Stein and D. Joyner, “SAGE: System for Algebra and Geome-
try Experimentation,” Comm. Computer Algebra, vol. 39, 2005,
pp. 61–64.

3. P. Barrett, J. Hunter, and P. Greenfield, “Matplotlib: A Portable
Python Plotting Package,” Astronomical Data Analysis Software &
Systems, vol. 14, 2004.

4. E. Jones, T. Oliphant, and P. Peterson, “SciPy: Open Source Sci-
entific Tools for Python,” 2001; www.scipy.org.

5. P. Ramachandran, “TVTK: A Pythonic VTK,” Proc. EuroPython
Conf., EuroPython, 2005; http://svn.enthought.com/enthought/
attachment/wiki/TVTK/tvtk-paper-epc2005.pdf.

6. D.M. Beazley and P.S. Lomdahl, “Extensible Message Passing
Application Development and Debugging with Python,” Proc.
11th Int’l Parallel Processing Symp., IEEE CS Press, 1997, pp.
650–655.

7. P. Miller, “Parallel, Distributed Scripting with Python,” Third Linux
Clusters Inst. Int’l Conf. Linux Clusters: The HPC Revolution,
Lawrence Livermore Nat’l Laboratory, 2002; www.llnl.gov/tid/
lof/documents/pdf/240425.pdf.

8. K. Hinsen, “High-Level Parallel Software Development with
Python and BSP,” Parallel Processing Letters, vol. 13, s2003, pp.
473–484.

Fernando Pérez is a research associate in the Department
of Applied Mathematics at the University of Colorado at
Boulder. His research interests include new algorithms for
solving PDEs in multiple dimensions with a focus on prob-
lems in atomic and molecular structure, the use of high-
level languages for scientific computing, and new
approaches to distributed and parallel problems. Pérez
has a PhD in physics from the University of Colorado.
Contact him at Fernando.Perez@colorado.edu.

Brian E. Granger is a research scientist at Tech-X. He has
a background in scattering and many-body theory in the
context of atomic, molecular, and optical physics. His re-
search interests include interactive parallel and distributed
computing, remote visualization, and Web-based inter-
faces in scientific computing. Granger has a PhD in theo-
retical physics from the University of Colorado. Contact
him at bgranger@txcorp.com.

The American Institute of Physics is a not-for-profit membership
corporation chartered in New York State in 1931 for the purpose of
promoting the advancement and diffusion of the knowledge of
physics and its application to human welfare. Leading societies in the
fields of physics, astronomy, and related sciences are its members.

In order to achieve its purpose, AIP serves physics and related
fields of science and technology by serving its member societies,
individual scientists, educators, students, R&D leaders, and the
general public with programs, services, and publications—
information that matters.

The Institute publishes its own scientific journals as well as those
of its member societies; provides abstracting and indexing
services; provides online database services; disseminates reliable
information on physics to the public; collects and analyzes
statistics on the profession and on physics education; encourages
and assists in the documentation and study of the history and
philosophy of physics; cooperates with other organizations on
educational projects at all levels; and collects and analyzes
information on federal programs and budgets.

The Institute represents approximately 134,000 scientists through
its member societies. In addition, approximately 6,000 students in
more than 700 colleges and universities are members of the
Institute’s Society of Physics Students, which includes the honor
society Sigma Pi Sigma. Industry is represented through the
membership of 38 Corporate Associates.

Governing Board:* Mildred S. Dresselhaus (chair), David Aspnes,
Anthony Atchley, Martin Blume, Marc H. Brodsky (ex officio), Slade
Cargill, Charles W. Carter Jr., Hilda A. Cerdeira, Marvin L. Cohen,
Timothy A. Cohn, Lawrence A. Crum, Bruce H. Curran, Morton M.
Denn, Robert E. Dickinson, Michael D. Duncan, Judy R. Franz, Brian J.
Fraser, John A. Graham, Toufic Hakim, Joseph H. Hamilton, Ken
Heller, James N. Hollenhorst, Judy C. Holoviak, John J. Hopfield,
Anthony M. Johnson, Angela R. Keyser, Louis J. Lanzerotti, Harvey
Leff, Rudolf Ludeke, Robert W. Milkey, John A. Orcutt, Richard W.
Peterson, S. Narasinga Rao, Elizabeth A. Rogan, Bahaa A.E. Saleh,
Charles E. Schmid, Joseph Serene, James B. Smathers, Benjamin B.
Snavely (ex officio), A.F. Spilhaus Jr, and Hervey (Peter) Stockman.
*Board members listed in italics are members of the Executive Committee.

Management Committee: Marc H. Brodsky, Executive Director and
CEO; Richard Baccante, Treasurer and CFO; Theresa C. Braun, Vice
President, Human Resources; James H. Stith, Vice President,
Physics Resources; Darlene A. Walters, Senior Vice President,
Publishing; and Benjamin B. Snavely, Secretary.

www.a ip .or g

