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ABSTRACT
Given a set of data items, we consider the problem of filtering them
based on a set of properties that can be verified by humans. This
problem is commonplace in crowdsourcing applications, and yet,
to our knowledge, no one has considered the formal optimization
of this problem. (Typical solutions use heuristics to solve the prob-
lem.) We formally state a few different variants of this problem.
We develop deterministic and probabilistic algorithms to optimize
the expected cost (i.e., number of questions) and expected error.
We experimentally show that our algorithms provide definite gains
with respect to other strategies. Our algorithms can be applied in a
variety of crowdsourcing scenarios and can form an integral part of
any query processor that uses human computation.

1. INTRODUCTION
Crowdsourcing enables programmers to write procedures that

employ Human Computation [14] at a large scale in order to solve
problems that are hard to solve algorithmically, such as understand-
ing text, sound, video and images.

Recently, there has been a lot of interest in the database research
community in using crowdsourcing within a database [4, 7, 8, 12,
13]. The vision is to be able to pose declarative queries that not only
refer to stored data, but also to data computed on-demand from
humans. The goal is to design a query processor and optimizer
that automatically decomposes the query into small unit tasks that
are answerable by humans. These unit tasks could be as simple
as comparing two items, rating an item or answering a Boolean
question.

As part of the query processor, we require human-computation
versions of algorithmic building blocks, such as sorting, filtering,
searching, categorization or clustering, where the basic operations
are done by humans. For instance, humans may be asked to sort a
set of profile images by some desired property (such as beauty or
age), or to categorize a data set of videos into humor, action, drama
and so on. The implementation of these building blocks poses a
new set of challenges, as it has to take into account mistakes in hu-
man input, monetary compensation for humans, and the inherently
high latency of human computation.
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In this paper, we focus on one of these fundamental building
blocks, an algorithm to filter a set of data items. For example, we
may have a set of images, videos, or text, and we want to use hu-
mans to decide if the items have particular properties. We use the
term filter for each of the properties we wish to check. For instance,
one filter could be “image shows a scientist,” and another could be
“people in image are looking at camera.” If we apply both filters,
we should obtain images of scientists looking at the camera. The
emphasis in this paper is on applying a single filter, however, we
also provide extensions to conjunctions of filters.

At first sight, the problem of checking which of a set of items sat-
isfy a filter seems trivial: Simply take each item in turn, and ask a
human a question: Does this item satisfy the filter? The solution is
the subset of items that received a positive answer. Unfortunately,
humans may make mistakes, so we may not get a desirable solu-
tion with such a simple strategy. We may instead show each item
to multiple people and somehow combine the answers, e.g., if 2
out of 3 vote yes, then we say the item satisfies the filter. But what
is the right way to combine the votes? And how many questions
should we ask per item? Does it matter if humans are more likely
to make false positive mistakes, as opposed to false negatives? And
what if we know a priori that most items are very likely to satisfy
the filter? How does this knowledge change our filtering approach?
Furthermore, we may not have an unlimited budget or time to do
our filtering. So how do we select a strategy that, for instance, min-
imizes costs (e.g., total number of questions asked) while keeping
overall error below a desired threshold?

The problem of filtering with humans is, well, as old as human-
ity itself, so not surprisingly there is a lot of prior work. Our work
is reminiscent of statistical hypothesis testing [19]. While the un-
derlying model is similar to ours (our hypothesis is that an item
satisfies a filter), the fundamental difference with our work is in the
optimization criteria: With hypothesis testing, one wishes to en-
sure that the decision on each item meets an error or cost bound.
In our case, on the other hand, we filter a large set of items, and
our bounds are on the overall error or cost. In Section 2 we argue
that these optimization criteria are often desirable in crowdsourc-
ing. Furthermore, in Section 7 we show that use of our criteria can
lead to substantial cost savings over the traditional, more conserva-
tive approach.

Emerging crowdsourcing applications [4, 5] have implemented
various types of filtering (e.g., majority voting), but have not stud-
ied how to implement optimal filtering strategies. Prior work on
using human feedback for information integration [9] (which we
will show is worse than our algorithms) uses a heuristic approach to
solve the problem. Previous work has also looked at the problem of
deciding how and when to obtain labels for machine learning [17,
11, 10], but not the problem of minimizing cost. We revisit related



work in more detail in Section 8.
Note that in addition to being useful for query optimization, fil-

tering is also of independent interest in human computation. For
example, detecting spam websites in a set of websites (a very com-
mon task on Mechanical Turk [1]) is also an instance of the single-
filter problem. Relevance judgments for search results [2], where
the task is to determine whether a web-page is relevant or not for a
given web-search query, is another instance.

Our contributions are the following:
• We identify the interesting dimensions of the single filter

problem, which in turn reveal which parameters of the prob-
lem can be constrained or optimized in a meaningful manner
in Section 2. We formulate five different versions of the prob-
lem under constraints on these parameters. We also develop
a novel grid-based visualization to reason about strategies for
the problems that we describe.
• For deterministic strategies, in Section 3, we develop an al-

gorithm that designs an approximately optimal deterministic
strategy (for the cases where we definitely want a determinis-
tic strategy due to simplicity of representation or not having
to toss a random dice).
• For probabilistic strategies, in Section 4, we develop a lin-

ear programming solution to produce the optimal probabilis-
tic strategy. Our approach naturally generalizes to a setting
where multiple possible answers may arise, instead of just
two, for instance, colors: red, blue, green, and so on.
• We discuss how our techniques can be extended to the case

of multiple filters in Section 6.
• We show that our algorithms perform exceedingly well com-

pared to standard statistics approaches as well as other naive
and heuristic approaches in Section 7.

2. PRELIMINARIES
For the majority of this paper, we consider the single filter prob-

lem, but we do generalize to multiple filters in Section 6. Also, we
assume that our filters are “binary” (i.e., they simply return YES
or NO), rather than the “n-ary” filtering case, where the filters may
return one out of a set of n disjoint alternatives. (This “n-ary” prob-
lem is relevant when we are classifiying each item into exactly one
out of a set of classes, e.g., assigning colors.) Our techniques gen-
eralize directly to the “n-ary” filtering problem.

2.1 Formal Definitions
We are given a set of items D, where |D| = n. We introduce a

random variable V that controls whether an input item satisfies the
filter (V = 1) or not (V = 0). The selectivity of our filter, s, gives
us the probability that V = 1 (over all possible items). The selec-
tivity may be estimated by sampling on a small number of items.
(The sampling approach is commonly used by query optimizers to
estimate the size of a selection operator.)

However, we assume we cannot examine an item and determine
with certainty whether that item satisfies the filter or not. The only
type of action we can perform on an item is to ask a human a ques-
tion. The human can tell us YES (meaning that he thinks the item
satisfies the filter) or NO. The human can make mistakes, and in
particular:
• The false positive rate is:

Pr[answer is YES|V = 0] = e0

• The false negative rate is

Pr[answer is NO|V = 1] = e1

(We use two distinct probabilities of error because our experience
with Mechanical Turk indicates that the false positive rate and false
negative rate for a filter can be very different.) We can ask different
humans the same question to get better accuracy, and we assume
that their errors are independent. (Thus we assume all humans are
able to answer the question with the same degree of accuracy.)

A strategy is a computer algorithm that takes as input any one
item, asks one or more humans questions on that same item, and
eventually outputs either “Pass” or “Fail”. A Pass output repre-
sents a belief that the item satisfies the filter, while Fail represents
the opposite. Of course, a strategy can also make mistakes, and
our job will be to design good strategies, i.e., ones that “make few
mistakes without asking too many questions”. We will express this
goal more formally later on.

A strategy can be visualized by a two-dimensional grid like the
one in Figure 1(a). The Y axis represents the number of YES an-
swers obtained so far from humans, while theX axis is the number
of NO answers so far. A grid point at (x, y) determines what the
strategy does after x NOs and y YESs have been received from hu-
mans: A blue grid point indicates that the strategy outputs Pass at
this point, while a red point indicates a Fail decision. We call a
point that is either blue or red a termination point. At a green point
no decision is made and the strategy issues another question, and
thus moves to either (x, y + 1) (if an additional YES is received)
or to (x+1, y) (if a NO is received). We call green points continue
points (i.e., we continue to ask questions.) Thus, the evaluation of
an item starts at (0, 0) (no questions have been asked), and moves
through the grid until hitting either a blue or red grid point. Note
that the black points are not reachable under any circumstances.
Our example in Figure 1(a) depicts a strategy that always asks a
fixed number of questions, in this case 4. Thus, the termination
points are along the x+ y = 4 line.

Although we have described the strategy of Figure 1(a) as pro-
cessing a sequence of YES/NO answers, it can also represent a sce-
nario where a batch of questions is asked at once. (In some systems
such as Mechanical Turk [1] it is more effective to issue batches of
questions.) If a batch of questions is issued, the strategy describes
what to do as each answer is received and processed. If a decision is
reached before all answers are received, the outstanding questions
can be canceled. If we process all answers and need more, we can
issue another batch of questions. (Note that we do not need to issue
another batch if we ask the maximum number of questions needed
by the strategy in the first batch itself.)

As a second example of a strategy, consider Figure 1(b). In this
strategy, we stop as soon as we get four YESs or four NOs. Thus,
the total number of questions will vary between 4 and 7.

The astute reader will notice that both of our sample strategies
have a certain structure: The termination points (blue/red) form
an uninterrupted path, starting at the y axis and ending at the x
axis. All the points between this path and the origin are green,
and all points outside this area are white (cannot be reached). In
Section 3.2 we will study strategies with these properties.

Also note that the strategies of Figure 1(a) and 1(b) are deter-
ministic, i.e., the output is the same for the same sequence of an-
swers. In Section 4 we discuss probabilistic strategies where the
decision at each grid point is probabilistic. For instance, at a par-
ticular grid point we may continue asking questions with proba-
bility 0.6, may determine Pass with probability 0.3 and Fail with
probability 0.1. Thus we represent each grid point by a triple like
(0.6, 0.3, 0.1). For deterministic strategies, the only triple values
allowed are (1, 0, 0) (green point), (0, 1, 0) (blue point) or (0, 0, 1)
(red point).

Note that our strategies are defined to be naturally uniform, i.e.,



Figure 1: (a) Visualization of a Triangular Strategy (b) Visualization of a Rectangular Strategy (c) Error at Terminating Points vs. Overall Error

the same strategy is applied to each item in the data set, and com-
plete, i.e., the strategy tells us what to do at each reachable point in
the grid.

In addition, we want our strategies to be terminating, i.e., the
strategy always terminates in a finite number of steps, no matter
what sequence of YES/NO answers are received to the questions
(a terminating strategy effectively corresponds to a closed shape
around the origin). Note that the strategies in Figures 1(a) and 1(b)
are terminating. We will enforce a termination constraint in our
problem formulations in Section 2.3.

We also want our strategies to be fully determined in advance,
so that we do not need to do any computation on the fly while the
answers are received. Thus, we present algorithms that compute
complete strategies.

2.2 Metrics
To determine which strategy is best, we study two types of met-

rics, involving error and cost. We start by defining two quantities,
given a strategy:
• p1(x, y) is the probability that the strategy reaches point (x, y)

and the item satisfies the filter (V = 1); and
• p0(x, y) is the probability that the strategy reaches point (x, y)

and the item does not satisfy the filter (V = 0).
Below we give a simple example to illustrate these quantities, and
in Section 2.4 we show how to compute them in general. Further-
more, let us say if a Pass decision is made at (x, y) then Pass(x, y)
holds, and that if a Fail decision is made, then Fail(x, y) holds. If
either decision is made, we say that Term(x, y) holds.

We can now define the following metrics:
• E(x, y) (only of interest when Term(x, y) holds) is the prob-

ability of error given that the strategy terminated at (x, y). If
Pass(x, y), then an error is made if V = 0, so E(x, y) is
p0(x, y) divided by the probability that the strategy reached
(x, y) (i.e., divided by p0(x, y) + p1(x, y)). The Fail(x, y)
case is analogous, so we get:

E(x, y) =


p0(x,y)

[p0(x,y)+p1(x,y)]
if Pass(x, y)

p1(x,y)
[p0(x,y)+p1(x,y)]

if Fail(x, y)

0 else
(1)

• E is the expected error across all termination points. That is:

E =
∑
(x,y)

E(x, y)× [p0(x, y) + p1(x, y)]. (2)

• C(x, y) (only of interest when Term(x, y) holds) is the num-
ber of questions used to reach a decision at (x, y), i.e., simply
x+ y. We consider C(x, y) to be zero at all non-termination

points (where Term(x, y) does not hold).
• C is the expected cost across all termination points, i.e.,:

C =
∑
(x,y)

C(x, y)× [p0(x, y) + p1(x, y)] (3)

Note that to evaluate our n items using the same strategy, we
will incur an expected cost of nC.

To illustrate these metrics, consider the simple deterministic strat-
egy in Figure 1(c), and assume that s = 0.5, e1 = 0.1, e0 = 0.2.
At each termination point (x, y) we show E(x, y). For example,
E(0, 2) = 0.05. This number can be interpreted as follows: In 5%
of the cases where we end up terminating at (0, 2), an error will be
made. In the remaining 95% of the cases a correct (Pass) decision
will be made. To compute E(0, 2), we need the p0 and p1 values.
Since there is only a single way to get to (0, 2) (two consecutive
YESs) the computation is simple: p0(0, 2) is (1 − s) (V must be
0) times twice e0, i.e., 0.02 (thus, p0(0, 2) = (1− s)× e20). Simi-
larly, p1(0, 2) = s× (1− e1)2 = 0.5× 0.9× 0.9 = 0.405. Thus,
E(0, 2) = 0.02/[0.02 + 0.405] = 0.05. When there are multiple
ways to get to a point (e.g., for (1, 1)) the p0, p1 computation is
more complex, and will be discussed in Section 2.4.

The expected errorE for this sample strategy is the error weighed
by the probability of getting to each termination point. In this case,
it turns out that E = 0.115. Notice the difference between the
overall error E and the individual termination point errors: The
error at (1, 1) is quite high, but because it is not very likely that
we end up at (1, 1), that error does not contribute as much to the
overall E.

2.3 The Problems
Given input parameters s, e1, and e0, the search for a “good” or

“optimal” strategy can be formulated in a variety of ways. Since we
want to ensure that the strategy terminates, we enforce a threshold
m on the maximum number of questions we can ask for any item
(which is nothing but a maximum budget for any item that we want
to filter).

We start with the problem we will focus on in this paper:

PROBLEM 1 (CORE). Given an error threshold τ and a bud-
get threshold per item m, find a strategy that minimizes C under
the constraint E < τ and ∀(x, y) C(x, y) < m.

An alternative would be to constrain the error at each termination
point:

PROBLEM 2 (CORE: PER-ITEM ERROR). Given an error thresh-
old τ and a budget threshold per item m, find a strategy that mini-
mizes C under the constraint ∀(x, y) E(x, y) < τ and C(x, y) <
m.



p0(x, y) =


p0(x− 1, y)(1− e0) + p0(x, y − 1)e0 if ¬Term(x, y − 1) ∧ ¬Term(x− 1, y)
p0(x, y − 1)e0 if ¬Term(x, y − 1) ∧ Term(x− 1, y)
p0(x− 1, y)(1− e0) if Term(x, y − 1) ∧ ¬Term(x− 1, y)
0 if Term(x, y − 1) ∧ Term(x− 1, y)

p1(x, y) =


p1(x, y − 1)(1− e1) + p1(x− 1, y)e1 if ¬Term(x, y − 1) ∧ ¬Term(x− 1, y)
p1(x, y − 1)(1− e1) if ¬Term(x, y − 1) ∧ Term(x− 1, y)
p1(x− 1, y)e1 if Term(x, y − 1) ∧ ¬Term(x− 1, y)
0 if Term(x, y − 1) ∧ Term(x− 1, y)

Figure 2: Recursive Equations for p0 and p1

In Problem 2 we ensure that the error is never above threshold,
even in very unlikely executions. This formulation may be pre-
ferred when errors are disastrous, e.g., if our filter is checking for
patients with some disease, or for defective automobiles. However,
in other cases we may be willing to tolerate uncertainty in some
individual decisions (i.e., high E(x, y) at some points), in order
to reduce costs, as long as the overall error E is acceptable. For
instance, say we are filtering photographs that will be used by an
internet shopping site. In some unlikely case, we may get 10 YES
and 10 NO votes, which may mean we are not sure if the photo sat-
isfies the filter. In this case we may prefer to stop asking questions
to contain costs and make a decision, even though the error rate
at this point will be high no matter what we decide. In Section 7
we study the price one pays (number of questions) for adopting
the more conservative approach of Problem 2 under the same error
threshold.

Instead of minimizing the overall cost, one could minimize the
maximum cost at any given point, as in the next problem:

PROBLEM 3 (MAXIMUM COST). Given an error threshold τ ,
find a strategy that minimizes the maximum value of C(x, y) (over
all points), under the constraint E < τ .

Another variation is to minimize error, given some constraint on
the number of questions. We specify two such variants next. In the
first variant we have a maximum budget for each item we want to
filter, while in the second variant we have an additional constraint
on the expected overall cost.

PROBLEM 4 (ERROR). Given a budget threshold per item m,
find a strategy that minimizesE under the constraint ∀(x, y)C(x, y) <
m.

PROBLEM 5 (ERROR - II). Given a budget threshold per item
m and a cost threshold α, find a strategy that minimizes E under
the constraints ∀(x, y) C(x, y) < m and C < α.

2.4 Computing Probabilities at Grid Points
In this subsection we show how to compute the p0 and p1 values

defined in the previous subsection. We focus on a deterministic
strategy (probabilistic strategies are discussed in Section 4).

We compute the p values recursively, starting at the origin. In
particular, note that p0(0, 0) is (1 − s) and p1(0, 0) is s. (For
instance, p0(0, 0) is the probability that the item does not satisfy
the filter and the strategy visits the point (0, 0) — which it has to.)
We can then derive the probability p0 and p1 for every other point
in the grid as shown in Figure 2. (Recall that Term(x, y) means
that (x, y) is a termination point, either Pass or Fail.)

To see how these equations work, let us consider the first case for
p0, where neither (x− 1, y) nor (x, y − 1) are termination points.
Note that we can get to (x, y) in two ways, either from (x, y − 1)
on getting an extra YES, or from (x−1, y) on getting an extra NO.
Thus, the probability of an item not satisfying the filter and getting

to (x, y) is the sum of two quantities: (a) the probability of the item
not satisfying the filter and getting to (x, y−1) and getting an extra
YES, and (b) the probability of the item not satisfying the filter and
getting to (x − 1, y) and getting an extra NO. The probability of
getting an extra YES given that the item does not satisfy the filter
is precisely e0, and the probability of getting a NO is (1− e0). We
can write similar equations for p1, as shown in the figure.

Given values for p0 and p1, we can use the definitions of Sec-
tion 2.1 to compute the errors and costs at each point, and the over-
all error and cost. Note that we do not have to compute the p values
at all points, but only for the reachable points, as all other points
have zero error E(x, y) and cost C(x, y).

3. DETERMINISTIC STRATEGIES
This section develops algorithms that find effective deterministic

strategies for Problem 1.

3.1 The Paths Principle
Given a deterministic strategy, using Equations 1, 2, 3 and Fig-

ure 2 given earlier, it is easy to see that the following theorem holds:

THEOREM 3.1 (COMPUTATION OF COST AND ERROR). The
expected cost and error of a strategy can be computed in time pro-
portional to the number of reachable grid points.

Based on the above theorem, we have a brute force algorithm to
find the best deterministic strategy, namely by examining strategies
corresponding to all possible assignments of Pass, Fail or Continue
(i.e., continue asking questions) to each point in (0, 0) to (m,m).
(There are 3m such assignments.) Evaluating cost and error for
each strategy takes time O(m2) using the recursive equations. We
select the one that satisfies the error threshold, and minimizes cost.
We call this algorithm naive3.

Note that some of these strategies are not terminating. However,
termination can also be checked easily for each strategy considered
in time proportional to the number of reachable grid points in the
strategy. (If the p0 and p1 values at all points on the line x + y =
m′, for some m′ ≤ m is zero, then the strategy is terminating.)

THEOREM 3.2 (BEST STRATEGY: NAIVE3). The naive3 al-
gorithm finds the best strategy for Problem 1 in O(m23m).

We are able to reduce significantly the search space of the naive
algorithm by excluding the provably suboptimal strategies. Our
exclusion criterion is based on the following fundamental theorem.

THEOREM 3.3 (PATHS PRINCIPLE). Given s, e1, e0, for ev-
ery point (x, y), the function R(x, y) = p0(x, y)/(p0(x, y) +
p1(x, y)) is a function of (x, y), independent of the particular (de-
terministic or probabilistic) strategy.

PROOF. Consider a single sequence of x No answers and y Yes
answers. The probability that an item satisfies the filter, and gets the
particular sequence of xNo answers and y Yes answers is precisely



Figure 3: (a) A Shape (b) Triangular Strategy Corresponds to a Shape (c) Ladder Shape Pruning

a = s× ex1 × (1− e1)y , while the probability that an item does not
satisfy the filter and gets the same sequence is b = (1− s)× ey0 ×
(1− e0)x. The choice of strategy may change the number of such
paths to the point (x, y), however the fraction of p0 to p0 + p1 is
still b/(a+ b). (Note that each path precisely adds a to p1 and b to
p0. Thus, if there are r paths, p0/(p0 + p1) = (r × b)/[r × (a +
b)] = b/(a+ b).) It can be shown that the proof also generalizes to
probabilistic strategies. (In that case, r can be a fractional number
of paths.)

Intuitively, this theorem holds because the strategy only changes
the number of paths leading to a point, but the characteristics of the
point stay the same.

Using the previous theorem, we have the result that in order to
reduce the error, for every termination point (x, y), Passing or Fail-
ing is independent of strategy, but is based simply on R(x, y).

THEOREM 3.4 (FILTERING INDEPENDENT OF STRATEGY).
For every optimal strategy, for every point (x, y), if Term(x, y)
holds, then:

• If R(x, y) > 1/2, then Fail(x, y)

• If R(x, y) < 1/2, then Pass(x, y)

PROOF. Given a strategy, let there be a point (x, y) for which
Pass(x, y) holds, but R(x, y) > 1/2. Let the error be:

E = E0 + E(x, y)(p0(x, y) + p1(x, y))

(We split the error into two parts, one dependent on other termi-
nating points, and one just dependent on (x, y).) Currently, since
(x, y) is Pass, E(x, y) is p0(x, y)/(p0(x, y) + p1(x, y)). Thus,
E = E0 + p0(x, y). If we change (x, y) to Fail, we get E′ =
E0 + p1(x, y), then E′ < E. Thus, by flipping (x, y) to Fail,
we can only reduce the error. Similarly, if R(x, y) < 1/2 and
Fail(x, y) holds, we can only reduce the error by flipping it to
Pass(x, y).

Thus, we only need to consider 2m strategies, namely those where
for each point, we can either set it to be a continue point or a termi-
nation point, and if it is a termination point, then using the previous
theorem, we can infer whether it should be Pass or Fail.1 The algo-
rithm that considers all such 2m strategies is called naive2. Thus,
we have the following theorem:

THEOREM 3.5 (BEST STRATEGY: NAIVE2). The naive2 al-
gorithm finds the best strategy for Problem 1 in O(m22m).

1Note that there is a subtle point here. When R(x, y) = 1/2 then
the point can either be a Pass or a Fail point, with equal effect. (It
will contribute the same amount of error either way.) For simplicity
we assume it to always return Pass if this holds.

3.2 Shapes and Ladders
In practice, considering all 2m strategies is computationally fea-

sible only for very small m. In this section, we design algorithms
that only consider a subset of these 2m strategies and thereby can
only provide an approximate solution to the problem (i.e., the ex-
pected cost may be slightly greater than the expected cost of the
optimal solution). The subset of strategies that we are interested in
are those that correspond to shapes. We will describe an efficient
way of obtaining the best strategy that corresponds to a shape.

Shapes: A shape is defined by a connected sequence of (horizontal
or vertical) segments on the grid, beginning at a point on the y-
axis, and ending at a point on the x axis, along with a special point
somewhere along the sequence of segments, called a decision point.
We also assume that each segment intersects at most with two other
lines, namely the ones preceding and following it in the sequence.
As an example, consider the shape in Figure 3(a) (ignore the dashed
lines for now) This shape begins at (0, 4), has a sequence of 14
segments, and ends at (4, 0). The decision point (not shown in the
figure) is (for example) at (5, 5). As seen in the figure, the segments
are allowed to go in any direction (up/down or left/right).

Each shape corresponds to precisely one strategy, namely the one
defined as follows:
• For each point in the sequence of segments starting at the

point on the y axis, until and including the decision point,
we color the point blue (i.e., we designate the point as Pass).
In the figure, all points in the sequence of segments starting
from (0, 4) until and including (5, 5) are colored blue.
• For each point in the sequence of segments starting at the

point after the decision point, until and including the point
on the x axis, we color the point red (i.e., we designate the
point as Fail). In the figure, all points after (5, 5) on the
sequence of segments are colored red.
• For all the points inside or on the shape that are reachable,

we color them green; else we color them white. (Some points
colored blue or red previously may actually be unreachable
and will be colored white in this step.) In the figure, some
of the blue points, such as (2, 5), (1, 5), (1, 6), . . ., (5, 5),
and some of the red points (5, 4), . . ., (4, 3), and (4, 1) are
colored white, while some of the unreachable points inside
the shape, such as (3, 4) and (4, 4) are colored white as well.
The reachable points inside the shape, like (1, 1) or (2, 3) are
colored green.

The strategies that correspond to shapes form a large and diverse
class of strategies. In particular, the triangular strategy and rect-
angular strategy both correspond to shapes. Consider Figure 3(b),
which depicts a shape corresponding to the triangular strategy of



Figure 1(a). (Again, ignore dashed lines in the figure.) The shape
consists of eight connected segments, beginning at (0, 4) and end-
ing at (4, 0), each alternately going one unit to the right or down.
The decision point in this case is the point (3, 2). Note that all
points in the segments leading up to (3, 2) are either blue or white
(unreachable), while all points in the segments after (3, 2) are red
or white. In this case, all the points on the interior of the shape are
continue points.

The rectangular strategy of Figure 1(b) corresponds to the shape
formed by two segments, one from (0, 4) to (4, 4) and one from
(4, 4) to (4, 0). The point (4, 4) is the decision point. As yet
another example, consider Figure 3(c). If we consider the shape
corresponding to the solid lines, we have a segment from (0, 2)
to (0, 5), another from (0, 5) to (2, 5), and so on until (6, 6) —
which is the decision point. Then we have five segments from (6,
6) to (0, 6). Once again, notice that some of the points before the
decision point in the sequence of segments, such as (3, 4) and (2, 5)
are unreachable, and some points after the decision point, like (6,
1) and (6, 2) are unreachable. The decision point is unreachable as
well. In this case, all internal points are reachable (and thus colored
green).

As an example of a strategy that does not correspond to a shape,
if the strategy in Figure 3(c) had an additional terminating point,
say Fail at point (1, 1), then it can never correspond to a shape.
Why shapes? One objection one may have to studying shapes is
that the best strategy corresponding to shapes may be much worse
than the best strategy overall.

However, the properties that shapes obey make intuitive sense.
First, note that the strategies that correspond to shapes only have
terminating points on the “boundary” of the strategy, and not on
the interior. This makes sense because it is not worthwhile to have
a termination point inside the boundary of termination points, since
we might as well move the boundary earlier. Second, the strategies
have a single decision point; this makes sense because it is not use-
ful to alternate between red and blue points on the boundary, since
the more YES answers we get relative to NO answers, the more
likely the item should satisfy the filter, hence we should be able
to improve the strategy by converting it to one with a single point
where the colors change.

In addition, we found that over 100 iterations of the naive2 al-
gorithm for random instances of the parameters s, e1, e0 andm, by
inspection all of the optimal strategies corresponded to shapes. In
addition, as we will see in the experiments, on varying parameters,
the best strategy given by naive2 is no better than the best strategy
corresponding to a shape.

Hence, we pose the following conjecture:

CONJECTURE 3.6. Given a problem, the best deterministic strat-
egy is one that corresponds to a shape.

Proving this conjecture remains open.
Ladder Shapes: From all strategies that correspond to shapes, if
we wanted to find the best strategy, we can prove that we only need
consider the subset of shapes that we call ladder shapes. A ladder
shape is formed out of two ladders connected at the decision point.
We first define a ladder to be a connected sequence of (flat or ver-
tical) segments connecting grid points, such that the flat lines go
“right”, i.e., from a smaller x value to a larger x value, and the ver-
tical lines go “up”, i.e., from a smaller y value to a larger y value.
As an example, in Figure 3(c), the sequence of (dashed and solid)
segments (0, 2)-(0, 3)-(3, 3)-(3, 6)-(6, 6) forms a ladder, while the
sequence of segments (0, 2)-(0, 5)-(2, 5)-(2, 3)-(3, 3)-(3, 6)-(6, 6)
is not a ladder because (2, 5) to (2, 3) goes from a larger y value
to a smaller y value. As another example, the sequence of solid

segments from (0, 4) to (4, 0) in Figure 3(b) is not a ladder because
the vertical segments go from a larger y value to a smaller y value,
while the segment (0-2)-(3,2) is a ladder.

We define the set of ladder shapes to be those shapes that contain
a decision point and two ladders, i.e., the connected sequence of
segments from the point on the y axis to the decision point forms
one ladder and the connected sequence of segments from the point
on the x axis to the decision point forms the second ladder. Thus,
ladder shapes are a subset of the set of all shapes. Intuitively, ladder
shapes are the shapes that we would expect to be optimal: the shape
is smaller at the sides (close to the x and y axis, where we are more
certain whether the item satisfies the filter or not), and larger close
to the center (away from both the x and y axis, where we are more
uncertain about the item).

As before, the strategy that corresponds to a ladder shape is the
one formed by coloring all the points in the “upper” ladder blue,
and all the points in the “lower” ladder red, then coloring all re-
maining reachable points inside the shape green, and coloring all
unreachable points inside or on the boundary of the shape white. In
the following, we provide a few examples of how we can convert
any shape into a ladder shape such that the strategy corresponding
to the ladder shape has the same or lower cost than the strategy cor-
responding to the shape. Since the set of ladder shapes is a subset
of all possible shapes, if we want to find the best strategy corre-
sponding to a shape, we can thus focus on ladder shapes instead of
all shapes. Thus, we have the following theorems:

THEOREM 3.7 (TRANSFORMATION). Any shape can be con-
verted into a ladder shape yielding lesser cost and the same error.

We now describe some examples of how the conversion algorithm
works. The algorithm along with an informal proof can be found in
the appendix. The algorithm essentially prunes redundant portions
of the shape to give a ladder shape.

THEOREM 3.8 (BEST SHAPE). For problem 1, the best strat-
egy from the set of shapes has equal cost to the best strategy from
the set of ladder shapes.

The above theorem gives us an algorithm, denoted ladder, which
considers a small subset of the set of all shapes, namely all the
ladder shapes. Note that this algorithm is still worst-case expo-
nential; however, as we will see in the experiments, this algorithm
performs reasonably well in practice, and in particular, much better
than naive2.
Examples of Converting Shapes to Ladder Shapes: First, con-
sider the triangular strategy shown in Figure 3(b). As it stands,
the shape (formed from the solid lines in the figure) is not a ladder
shape, since the sequence of segments leading to the decision point
(3, 2) from the point on the x axis as well as the point on the y
axis don’t form ladders. While the ladder from the y axis has seg-
ments that go “down” instead of “up”, the ladder from the x axis
has segments that go “left” instead of “right”. In the strategy cor-
responding to the shape, note that asking questions at points above
the line y = 2 is redundant, because once we cross y = 2 (i.e.,
2 Yes answers), we will always reach a Pass point. Similarly, no-
tice that asking questions at points on the right of the line x = 3
is redundant. Thus, we can convert this triangular strategy into a
rectangular strategy with the same error and lower cost simply by
pruning the regions to the top and to the right of the decision point,
and having termination points earlier. Notice that this corresponds
to the ladder shape formed by the two dashed ladders (one from (0,
2) to (3, 2) and one from (3, 0) to (3, 2), with the decision point
(3, 2)). Thus, the shape (giving the triangular strategy) can be con-
verted into a ladder shape (giving a rectangular strategy) with lower
cost and the same error.



As another example, consider Figure 3(c). Here the solid blue
line represents a shape corresponding to the strategy formed by the
blue, green and red dots. The shape has 10 lines: (0, 2)-(0, 5)-(2,
5)-(2, 3)-(3, 3)-(3, 6)-(6, 6) (which is also the decision point), (6,
6)-(6, 2) and so on. Now consider the shape corresponding to the
dashed blue line in the figure. (This shape is the same as the solid
shape, except for the portion (0, 3) to (3, 3) which bypasses the
segment portions (0, 3)-(0, 5)-(2, 5)-(2, 3)-(3, 3), and the portion
(5, 0) to (5, 1) which bypasses the segment portions (6, 0)-(6, 1)-
(5, 1)). Notice that this shape corresponds to a ladder shape (with
one ladder beginning at (0, 2) and ending at (6, 6), and another
beginning at (5, 0) and ending at (6, 6), with a decision point at
(6, 6)). This ladder shape corresponds to the strategy where there
is a blue point at (1, 3) and a red point at (5, 0). Notice that for
the strategy that corresponds to the shape, asking questions at (1,
3) and (1, 4) is redundant because the item will “Pass” no matter
what answers we get at (1, 3) and (1, 4). Thus, moving the segment
portion down to (1, 3) and to (5, 0) gives us a ladder shape that
corresponds to a strategy that asks fewer questions to obtain the
same result.

As yet another example, consider Figure 3(a), in this case, the
shape corresponding to the solid lines in the figure (with decision
point (5, 5)), can be replaced by the ladder shape corresponding to
the two ladders (0, 4)-(3, 4) and (3, 0)-(3, 4), with decision point
(3, 4).

Thus, we have shown some examples of how we can convert
shapes into ladder shapes such that the strategy corresponding to
the ladder shape has lower cost than the strategy corresponding to
the shape.

4. PROBABILISTIC STRATEGIES
In this section, we consider probabilistic strategies. Recall that

a probabilistic strategy is again represented in a grid, however,
each point has a triple (r1, r2, r3) corresponding to the probability
of returning Pass (blue), Fail (red), or Continue asking questions
(green).

Since the Paths Principle (Theorem 3.3) also holds for proba-
bilistic strategies, at least one of r1 or r2 must be 0 at each point
(x, y). We let a(x, y) = r3 be the probability that we continue to
ask questions at (x, y), and b(x, y) be 1−a(x, y) = r1 +r2. (This
is the probability that the strategy terminates at that point.)

We can pose Problem 1 as a set of constraints, where the ob-
jective is to minimize the expected cost C, given a constraint that
E < τ , along with some additional constraints, which are essen-
tially the counterparts of the equations described in Section 2.
• We have the probabilistic counterpart of Equation 1:

∀(x, y);x+ y ≤ m :
E(x, y) = b(x, y)×min(R(x, y), 1−R(x, y))

(4)

(Recall that R(x, y) is defined in Theorem 3.3.) Note that
the error at a certain point is simply the probability that the
strategy terminates at that point, times the smaller of the two
error probabilities R(x, y) and 1 − R(x, y) (since the Paths
Principle tells us that we would always choose whichever of
Pass or Fail has lower error probability). Note that R(x, y)
is a constant, independent of the strategy.
• The cost at a given point is simply the probability that the

strategy terminates at that point times the total number of
questions asked to get to the point.

∀(x, y);x+ y ≤ m : C(x, y) = b(x, y)× (x+ y) (5)

• The error and cost equations stay the same as equations 2 and

3.

E =
∑

(x,y);x+y≤m

E(x, y)× [p0(x, y) + p1(x, y)] (6)

C =
∑

(x,y);x+y≤m

C(x, y)× [p0(x, y) + p1(x, y)] (7)

• The counterpart of the equations in Figure 2 is simpler since
we ask an additional question at (x, y − 1) with probability
a(x, y − 1) and at (x− 1, y) with probability a(x− 1, y).

∀(x, y); x+ y ≤ m :
p0(x, y) = e0 · p0(x, y − 1) · a(x, y − 1)

+(1− e0) p0(x− 1, y) · a(x− 1, y)
(8)

∀(x, y); x+ y ≤ m :
p1(x, y) = e1 · p1(x− 1, y) · a(x− 1, y)

+(1− e1) p1(x, y − 1) · a(x, y − 1)
(9)

• In addition, we have the following constraints:

∀(x, y);x+ y = m : b(x, y) = 1 (10)

The constraint above forces the strategy to terminate at m
questions.

∀(x, y);x+ y ≤ m : a(x, y) + b(x, y) = 1 (11)

This constraint simply forces the probabilities of termination
and continuation at each point on the grid to add up to one.

This program is not linear, due to constraints 6, 7, 8 and 9 (all of
which involve a product of two variables). A key technical result
of our work is that we can use the Paths Principle (Theorem 3.3) to
transform the program into a linear program.
Transformed Program: We introduce a new pair of variables cPath
and tPath to replace p0, p1, a, b for every point in the grid. The
variable cPath(x, y) corresponds to the (fractional) number of paths
in the strategy from (0, 0) to (x, y) that continue onwards beyond
(x, y), while tPath(x, y) is the number of paths in the strategy that
terminate at (x, y). Thus, cPath(x, y) + tPath(x, y) represents
the number of paths reaching (x, y). For instance cPath(x, y) = 0
implies that all paths reaching (x, y) terminate at (x, y).

We let S1(x, y) = s×ex1×(1−e1)y (i.e., the probability that the
item satisfies the filter, and we get a given sequence of x no answers
and y yes answers), and S0(x, y) = (1− s)× ey0 × (1− e0)x (i.e.,
the probability that the item does not satisfy the filter, and we get
a given sequence of x no answers and y yes answers). Note that
R(x, y) = S0(x, y)/(S0(x, y) + S1(x, y)). Note also that S0 and
S1 are constants.

The following relationships are immediate:

p0(x, y) = S0(x, y)× (cPath(x, y) + tPath(x, y))

p1(x, y) = S1(x, y)× (cPath(x, y) + tPath(x, y))

These relationships hold because the probability of getting to a
point when the item satisfies the filter (or not) is simply the total
number of paths times the probability of a single path when the
item satisfies the filter (or not).

Additionally, since the probability a is simply the fraction of
paths that continue beyond (x, y), we have:

a(x, y) = cPath(x, y)/(cPath(x, y) + tPath(x, y))

b(x, y) = tPath(x, y)/(cPath(x, y) + tPath(x, y))

Now we describe how to rewrite the equations in terms of cPath
and tPath.



• Constraints 4, 5, 6 and 7 transform into:

E =
∑

(x,y);x+y≤m

tPath(x, y)×min(S0(x, y), S1(x, y))

C =
∑

(x,y);x+y≤m

tPath(x, y)(x+ y)(S0(x, y) + S1(x, y))

(Recall that S0, S1 are constants, so the constraints are lin-
ear.) In other words, E is precisely the number of paths lead-
ing to the point that terminate at that point, times the smaller
of the two error probabilities. The cost C is simply the cost
for all paths terminating at (x, y) (each such path has proba-
bility S0 + S1).
• Constraints 8 and 9 transform into:

∀(x, y);x+ y ≤ m : cPath(x, y) + tPath(x, y) =
cPath(x, y − 1) + cPath(x− 1, y)

In other words, the number of paths into (x, y) are precisely
those that come from (x, y − 1) and (x− 1, y)

• We replace constraint 10 with the following, which implies
that no paths go beyond x+ y = m.

∀(x, y);x+ y = m : cPath(x, y) = 0

• We also have the constraint that there is a single path to
(0, 0), i.e.

cPath(0, 0) + tPath(0, 0) = 1

No additional constraints exist.
Since linear programs can be solved in time quadratic in the

number of variables and constraints, we have the following theo-
rem:

THEOREM 4.1 (BEST PROBABILISTIC STRATEGY). The best
probabilistic strategy for Problem 1 can be found in O(m4).

We denote the algorithm corresponding to the linear program above
as linear.

5. OTHER FORMULATIONS

5.1 Problem 2
For Problem 2, we can show that we simply need to compute

R(x, y) for every point in (0, 0) to (m,m), bottom up, and for
every point where we find that min(R(x, y), 1−R(x, y)) < τ , we
make the point a terminating point, returning Fail if R(x, y) ≤ 0.5
and Fail otherwise.

In fact, we can actually terminate earlier if we find that p0 and
p1 are 0 for all points (x, y) : x+y = m′ at somem′ < m. In this
case, we do not need to proceed beyond points along x+ y = m′.

Note that a feasible strategy that terminates and satisfiesE(x, y) <
τ for every terminating point may not exist.

Thus, we have the following theorem:

THEOREM 5.1. The best strategy for Problem 2 can be found
in O(m2).

5.2 Problems 3 and 4
We begin by considering Problem 4 first. This problem formu-

lation is identical to Maximum A-Posteriori (MAP) estimation. In
this case we simply ask all m questions (since there is no gain to
asking fewer than m questions). We can estimate the p0 and p1 at
all points along x+ y = m for this triangular strategy. If p0 > p1,
we return Fail at that point and Pass otherwise. We can then esti-
mate the error E over all the terminating points.

Thus, we have the following theorem:

THEOREM 5.2. The best strategy for Problem 4 can be found
in O(m2).

(We can actually compute the best strategy in O(m) if binomial
expressions involving m can be computed in O(1) time.)

Subsequently, we can solve Problem 3 by performing repeated
doubling of the maximum cost m, until we find a triangular shape
for which E < τ , followed by binary search between the two
thresholds m and m/2. Thus, we have the following theorem:

THEOREM 5.3. The best strategy for Problem 4 can be found
in O(m2 logm).

(We can actually compute the best strategy in O(m logm) if bino-
mial expressions involving m can be computed in O(1) time.)

5.3 Problem 5
For Problem 5, we can use the same linear programming formu-

lation as in Section 2.4, except that we constrain C and minimize
E. We thus have the following:

THEOREM 5.4. The best probabilistic strategy for Problem 5
can be found in O(m4).

6. MULTIPLE FILTERS
Now, we consider the case when we have independent filters

f1, f2, . . . , fk, with independent selectivities s1, s2, . . . , sk, and
independent error rates e10, e11, e20, e21, . . . , ek0, ek1, where ei0
is the probability that a human answers YES when the item actu-
ally does not pass the ith filter, and ei1 is the probability that the
human answers NO when the item actually does pass the ith filter.
Note that the multiple filters problem is much harder than the single
filter one, since a strategy not only must decide when to continue
asking questions, but must also now decide which question to ask
next (i.e., for what filter). The problem becomes even harder when
the filters are correlated, however, we leave it for future work.

We can visualize the multiple filters case as a 2k dimensional
grid, where each point (x10, x11, x20, x21, . . . , xk0, xk1) corre-
sponds to the number of NO and YES answers received from hu-
mans for each of the filters. (xi0 indicates the number of NO an-
swers for the ith filter, and xi1 indicates the number of YES an-
swers for the ith filter.)

In its most general form, the multiple filters problem allows us,
at any point on this 2k-dimensional grid, to ask a question corre-
sponding to any of the k filters. Thus, each point can correspond to
“Pass”, “Fail”, or “Ask ith Filter”, where i can be one from 1 . . . k.
Using a general form of the Paths Principle (Theorem 3.3), if a
point is a terminating point, we can infer whether it should be a
Pass or a Fail point.

We can in fact represent the problem as a linear program, gener-
alizing the linear program in Section 4. The counterpart of the vari-
ables tPath and cPath are tPath and cPath1, . . . , cPathk, rep-
resenting respectively, the number of paths terminating at a given
point and the number of paths continuing in the direction of each
of the k filters. Similarly, the total number of paths coming into a
point is simply the paths coming in from each of the k directions.

THEOREM 6.1. The best probabilistic strategy for the multiple
filters version of Problem 5 can be found in O(m4k).

This algorithm is exponential in the number of filters k, which may
not be very large. However, any algorithm whose output is a strat-
egy using our visualization would need Ω(m2k), since we need to
provide a decision for each point in the 2k dimensional cube of size
m2k. It remains to be seen if we can find an optimal or approxi-
mately optimal strategy whose representation is smaller.



7. EXPERIMENTS
The goal of our experiments is to study the runtime and expected

cost and errors of our algorithms with respect to other naive and
approximate algorithms. We continue to focus on Problem 1.

In our experiments we explored wide ranges of values for our
parameters m, e0, e1, τ, s. In some cases we manually selected the
values, to study scenarios that interested us or to study extreme
cases in the parameter space. In other cases, we synthetically gener-
ated random instances of the parameter values (over given ranges),
to explore the average behavior. Since we do not have space to
report all of our results, we only report some representative ones,
and we explain how they support the findings that we state in boxes
below.

Algorithms:
We experimented with the following exact deterministic algo-

rithms:
• naive3: The naive algorithm that considers all 3m strategies.
• naive2: The naive algorithm that considers all 2m strategies

(after pruning strategies that violate the Paths Principle).
We also experimented with the following heuristic deterministic
algorithms:
• ladder: This algorithm returns the best strategy correspond-

ing to a ladder shape. This algorithm always returns a better
deterministic strategy than the heuristic proposed in [9], as
we will see in Section 8.
• growth: This greedy algorithm “grows” a strategy until the

constraints are met. It begins with the null strategy at (0, 0)
(i.e., terminate and return Pass or Fail). Then, the algorithm
“pushes the boundary ahead”. In other words, in each itera-
tion, the algorithm in turn considers moving each termination
point (x, y) to (x + 1, y) and (x, y + 1) and computes the
ratio of change in cost to change in error. The algorithm de-
cides to move the termination point that yields the smallest
increase in this ratio. This “pushing” continues until the error
constraint is satisfied.
• shrink: This greedy algorithm “shrinks” a strategy until the

cost cannot be decreased any longer. It begins with the tri-
angular strategy that asks all m questions, and “pushes the
boundary in”. In other words, in each iteration, the algorithm
for each terminating point (x, y) in turn, considers adding a
terminating point at (x, y−1) or (x−1, y) and computes the
ratio of the change in cost to change in error. The algorithm
decides to add a terminating point that yields the largest in-
crease in this ratio. The “shrinking” continues as long as the
error constraint is satisfied.
• rect: This algorithm tries all rectangular strategies that fit in

(m,m).
In addition, we have the optimal probabilistic algorithm:
• linear: This algorithm returns the strategy computed by the

linear program in Section 4.
Also, we compared our algorithms against the best algorithm for
Problem 2.
• point: This algorithm ensures that at every termination point,
E(x, y) < τ . Thus, this algorithm is optimal for Problem 2.
When the algorithm cannot find a feasible solution for Prob-
lem 2, we modify the solution to ensure that at least the cost
constraint C(x, y) < m is satisfied. That is, for an infeasi-
ble solution, we add termination points along the boundary
x+ y = m, if those points are reachable.

Note that there may be parameters for which some of the algo-

rithms return an infeasible solution (i.e., where the error constraint
is violated). It can be shown that for all algorithms except growth
and point, either all algorithms return feasible solutions or none
of them do. Algorithms growth and point, in addition to failing
whenever other algorithms fail, also fail in some other cases.
Comparison of Heuristic Deterministic Algorithms:

Results on Varying m: ladder results in large cost savings
compared to other heuristic deterministic algorithms, and fur-
thermore its cost decreases as m increases

Figure 4(a) presents the results of an experiment that supports
this finding. In this scenario, the parameters are s = 0.6, e0 =
0.2, e1 = 0.25, τ = 0.05, and m (horizontal axis) is varied from
8 to 16. The vertical axis shows the expected cost C returned by
the strategy found by the heuristic deterministic algorithms. For
instance, when m is 14, the cost for ladder is about 3.85 (i.e., we
need around 3.85 questions on average to get the desired expected
error), growth is about 3.9 and shrink is about 4. The plot for rect
is not shown, but rect is a straight line at about 5.6.

Note that even these small differences in expected cost can re-
sult in major cost savings overall. If there are a million items that
need to be filtered, where each question costs 10 cents andm is 14,
the ladder algorithm results in at least 0.05 ∗ 106 ∗ 0.1 = $5000
of savings over the shrink and growth algorithm, and a whopping
$100000 of savings over the rect algorithm.

While at first one might think that increasing the question limit
m will increase the overall cost, observe that in reality the oppo-
site is true for the ladder and rect algorithms. The reason is that
as m increases, the number of shapes available for consideration
strictly increases, giving the optimizer more choices. The same
cannot be said of the shrink and growth algorithms, since these are
both heuristic greedy search algorithms that can get stuck in local
minima. For instance, the cost for shrink increases as m goes from
10 to 11, and once again from 14 to 15 in the experiment above.
Note also that none of the algorithms give a feasible solution when
m < 8 for the set of constraints.

As mentioned earlier, space constraints prevent us from includ-
ing multiple results per finding. The extensive additional experi-
ments we performed support all of our findings.

Results on Varying s: growth sometimes gets stuck in local
minima; if not, shrink and growth outperform rect.

Our second experiment, depicted in Figure 4(b), illustrates this
finding. We fixed parameters e0 = 0.2, e1 = 0.25, τ = 0.05,m =
10, and varied s from 0.2 to 0.8 and compared the same algorithms
as before. The expected cost is plotted as a function of s. For in-
stance, when s is 0.5, the cost for ladder is about 4.15, growth is
about 4.28, rect (not depicted in figure) is about 5.68 and shrink
is about 4.35. Once again, ladder performs the best. As expected,
the cost increases when s is close to 0.5 since that situation is the
most uncertain (and therefore we need to ask more questions). Ad-
ditionally, when s < 0.3 or s > 0.7, growth gives an infeasible
answer (i.e., it gives a strategy that does not satisfy the constraint
on error) — depicted in the graph as the cost being set to∞. Since
the growth strategy does a local search around the origin, it can get
stuck in an infeasible local minimum where the error can no longer
be reduced by growing the strategy. The algorithm rect is much
worse than the other algorithms with an additional expected cost of
at least 1 over the other algorithms. However, it does give a feasible
solution when growth does not.

Results on Varying e1: Cost increases superlinearly as e1 in-
creases for all algorithms.
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Figure 4: For fixed values of parameters: (a) Varying m (b) Varying s (c) Varying e1

In the third experiment, depicted in Figure 4(c), we fixed param-
eters e0 = 0.25, s = 0.7, τ = 0.1,m = 15, and varied e1 from 0.1
to 0.45 and compared the algorithms. The expected cost is plotted
as a function of e1. Once again, the ladder algorithm performs the
best, while the growth and shrink algorithms each perform well in
some situations. Also, the expected cost increases as e1 increases,
in a superlinear fashion. growth once again returns an infeasible
answer for large e1, and there are some points where shrink does
extremely poorly compared to ladder, such as e0 = 0.25 (with a
difference in expected cost of 1, translating to > 33% in savings).
The experimental results on varying e0 are similar and therefore
not shown.
Comparison of ladder, point, and linear algorithms:

Having shown that ladder is the best heuristic deterministic al-
gorithm (at least in terms of the quality of the results; run time
performance is explored later on), the next natural question is how
it compares to our other choices.

Results on Varyingm: linear performs even better than ladder,
both of which perform significantly better than point, which
sometimes returns infeasible solutions.

To illustrate our finding, we repeated the same set-up of the ex-
periment in Figure 4(a) — the results are depicted in Figure 5(a).
We find that the point algorithm returns an infeasible solution even
for the case when m = 8 or 9, but for m = 10 onwards it returns
a feasible solution. This is probably because the point algorithm
terminates too early (and has too “narrow” a strategy) when m is
small, while the linear and ladder algorithms have a “wider” shape.
Interestingly, the cost of the point algorithm also increases asm in-
creases; this is because the strategy looks identical for any m and
m + 1, except that the termination points along x + y = m may
have been moved up to x+ y = m+ 1.

While the point algorithm is infeasible for m = 9, linear has
a cost of nearly 0.1 less than ladder, representing significant sav-
ings in overall cost. In addition, the cost returned by linear only
decreases as m increases since a larger space of solutions are con-
sidered.

The cost difference between point and linear is greater than what
we have observed in our earlier graphs. This difference highlights
the benefits of using an expected error bound (Problem 1) as op-
posed to a point error bound (Problem 2). And as mentioned earlier,
if we are filtering one million items, the savings are multiplicative.
Thus, for crowdsourcing applications where expected error is ad-
equate, linear (or ladder if a deterministic strategy is desired) is
clearly the way to go.
Comparison of Algorithms on Average:

So far we have illustrated our findings with particular scenar-
ios, i.e., particular parameter settings. To further validate our find-
ings, in this subsection we explore the average behavior of our al-
gorithms as we vary parameters randomly over a range of values.

Results on Varying m: (1) The linear and ladder algorithms
continue to outperform the other algorithms in our average
scenario, especially for large m. (2) For smaller m, shrink
does quite well.

In the first experiment, depicted in Figure 5(b), we compared
the algorithms on varying m for 100 synthetic instances where
s, e0, e1, τ were sampled from [0, 1], [0.1, 0.4], [0.1, 0.4], [0.005,
0.1] respectively. (We made sure that all three algorithms were fea-
sible for each of the random instances used.) The expected cost
is then averaged over all 100 instances, and plotted as a function
of m. We focus on the best algorithms so far, ladder and linear.
We also show shrink for comparison. (rect is always much worse,
and growth and point have cases where they returns infeasible an-
swers, and are typically not much better than shrink when they are
feasible).

We can see in Figure 5(b) that linear performs much better than
all algorithms for all m, with at least a difference of 0.1 on aver-
age. For lower m values, for these settings we do not see much
of an improvement on average between ladder and shrink, which
indicates that we may be able to use shrink for cases when m is
small. However, for larger m, we find that the difference between
ladder and shrink is at least 0.1. This is because there are more
opportunities for optimization for ladder and linear compared to
shrink as m increases.

Interestingly, we find that the cost does not strictly decrease for
linear and ladder as m increases; this is an artifact of our exper-
imental setup. For each m, we restrict our instances to those for
which all algorithms are feasible. Thus, for smaller m we are
not considering many of the “harder” cases, which are handled by
larger m, instead, we are only consider the “easier” cases, whose
expected cost is smaller. On the other hand, allowing a larger m
means that we can explore a larger space of solutions. Thus, the
variation with m is not as predictable as in the earlier case, except
that it seems to gradually increase with some small variations.

Results on Varying m: linear yields strictly better (lower cost)
strategies than ladder in a substantial majority of the scenar-
ios. Furthermore, ladder outperforms the rest of the determin-
istic algorithms in a substantial number of scenarios.

The previous experiment indicates that, on average, we get sig-
nificant improvements in cost by using linear and ladder. How-
ever, we would like to verify if this average scenario is because of
a few instances where there is a high difference in cost (while the
rest of the instances return the same cost). To see how often we get
strictly better strategies by using either ladder or linear, we counted
the number of random instances where linear gave a strictly better
strategy than the ladder, and the number of cases where ladder
gave a strictly better strategy than the rest of the algorithms for the
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same experimental setup described above. The results are depicted
in Figure 5(c).

We find that for m = 10, linear gives a strictly better strategy
than ladder in 80% of the cases (and in the remaining 20% of the
cases, gives a strategy of the same cost as ladder). On the other
hand, ladder gives a strictly better strategy than the rest of the al-
gorithms for over 45% of the cases (and in the remaining 55%,
gives a strategy of the same cost as the best heuristic algorithm).

Further, the number of scenarios where linear outperforms ladder
(and where ladder outperforms the others) continues to increase as
m increases. For m = 15, linear gives a strictly better strategy
than ladder in 90% of the cases, while ladder gives a strictly better
strategy than the rest of the algorithms in 65% of the cases.

Results on Varying s: The linear algorithm outperforms the
ladder algorithm much more when s is away from 0.5, while
the ladder algorithm outperforms the other algorithms more
when s is close to 0.5.

In the second experiment, depicted in Figure 6(a), we compared
the algorithms on varying s from 0.1 to 0.9 for 100 synthetic in-
stances where m = 14 and e0, e1, τ were sampled from [0.1, 0.4],
[0.1, 0.4], [0.005, 0.1] respectively. The average expected cost was
plotted as a function of s. In this case, we find that linear on average
yields a smaller cost than the other two algorithms by around 0.1,
but more so when s is away from 0.5. On the other hand, shrink
on average yields a larger cost than ladder, and more so when s is
closer to 0.5. In fact, when s = 0.5 shrink asks 0.5 higher ques-
tions on average.
Comparison to Naive Algorithms:

Cost for Random Instances: ladder performs identically to
naive2 and naive3 for each random instance generated.

In Section 3.2, we informally argued that any optimal determin-
istic strategy should be found by the ladder algorithm, although we
do not have a formal proof yet. In our next experiment we checked
for cost differences between strategies found by ladder and those
found by naive2, an exhaustive algorithm that does find the optimal
deterministic strategy. (naive3 gives the same result as naive2.)
We generated 100 synthetic instances for each m from 4 to 8 (with

s, τ, e1, e0 all uniformly sampled from [0, 1], [0.1, 0.4], [0.1, 0.4],
[0.005, 0.1] respectively). (Beyond 8, naive2 was impractical to
use.) We found that the ladder algorithm returns a strategy of the
same cost as naive2 for each instance. In fact, in none of the many
other experiments we performed did we find an instance where
ladder does not return the optimal deterministic strategy. This re-
sult is a strong indicator that the ladder algorithm is indeed optimal,
however, the proof is still open.
Runtime Comparisons

Runtime results on Varying m: naive3 and naive2 become im-
practical to use even for very smallm, while ladder and linear
are efficient alternatives for m as large as 15. For very large
m ≈ 40, shrink, growth, rect are able to return a strategy
fairly quickly.

In the first experiment, we compared the average runtimes (in
seconds) of the naive algorithms with the best deterministic and
best probabilistic algorithms across 100 synthetic instances for each
m from 4 to 14 (with s, τ, e1, e0 all uniformly sampled from [0, 1],
[0.1, 0.4], [0.1, 0.4], [0.005, 0.1] respectively). Comparing average
runtimes lets us see how much time we might take for an algorithm
for any set of parameters on average. Figure 6(b) shows the average
runtimes as a function of m. While naive2 and naive3 take more
than 5 minutes even for m as small as 5 and 7 respectively, the
ladder algorithm takes less than a minute even untilm = 14, while
the linear algorithm takes even less time. Thus, the optimizations
of Section 3 let us design strategies for larger m. (Our implemen-
tation of linear uses exact arithmetic, and as a result takes longer. If
we were willing to get a slightly worse solution, we may be able to
reduce the running time even further.) Note that if we are willing to
use a slightly worse deterministic algorithm, we can get strategies
for substantially larger values of m. For instance, growth is able to
return a solution for m = 40 within seconds, while shrink is able
to return a solution for m = 40 within a minute.
Variation of Ladder Shape: In our final set of experiments we
studied two interesting properties of the ladder shapes selected by
ladder. We define the height and width of a ladder shape to be,
respectively, the largest distance between the two ladders along the
y axis and along the x axis respectively. We also define the slope of



a ladder shape to be the ratio of the y coordinate to the x coordinate
of the decision point. Since there is no counterpart to ladders and
decision points in the strategies output by linear, we cannot study
them in this way.

Results on Varying s: The optimal ladder shape for ladder has
a decision point closer to the y axis (larger slope) when s is
small and closer to the x axis (smaller slope) when s is large.
In addition, the closer s is to 0.5, the further away the decision
point of the ladder shape is from the origin.

We fix e1 = 0.2, e0 = 0.2, τ = 0.05,m = 12, and vary s in
increments of 0.005 from 0 until 1. The results are depicted in Fig-
ure 6(c). We find that the slope of the optimal ladder shape moves
from 4 all the way down to 0 gradually as we increase s. (Note that
we set slope = 0 when the strategy is simply a terminating point
at the origin.) This result can be explained as follows: When s is
very small, it is unlikely that we will get any YES answers, so more
questions need to be asked to verify that an item actually passes the
filter, but not when the item does not pass the filter. On the other
hand, when s is large, it is unlikely that we will get any NO an-
swers, so more questions are needed to ascertain whether an item
fails the filter. Note that cost increases until 0.5 and then decreases,
as expected. Height and width are mirror images of each other
across x = 0.5: this is expected since e0 = e1, thus the best shape
for s is the best shape for 1− s.

8. RELATED WORK
The work related to our paper falls under four categories: crowd-

sourced schema matching, active learning, filtering applications,
and statistical hypothesis testing.

Crowdsourced schema matching: Recent work by McCann et.
al. [9] has considered the problem of using crowdsourcing for schema
matching. The core of the problem is similar: the crowd provides
noisy answers, and the goal is to determine whether a match is true
or not. The strategy used is the following: ask at least v1 ques-
tions, and stop either when the difference between the number of
YES and NO answers reaches a certain threshold δ, or when the
total number of questions asked is v2. The authors prove prob-
abilistic bounds on the maximum error from this strategy, under
specific assumptions for the performance of human workers. The
proposed strategy can be mapped to a shape in our framework. In
fact, we can convert the shape into a ladder shape (as described in
Section 3.2), and obtain a new strategy that asks fewer questions
while providing the same error guarantees. Moreover, since [9]
does not optimize for the number of questions, our cost-optimized
algorithms can provide even further improvements.

Active Learning: The field of active learning [16] addresses the
problem of actively selecting training data to ask an “oracle” (for
instance, the oracle could be an expert user) that would help train
a classifier with the least error. Our metric for error (i.e., expected
error) is the same as the 0-1 loss used in machine learning.

Typical papers studying active learning do not assume that the
oracle makes mistakes, and in any case, repeating the same question
to the oracle would typically not help. However, there are some
papers that do consider the case when many interchangeable noisy
humans can be used as oracles, and we discuss them next.

Sheng et. al. [17] consider the problem of obtaining labels for
training data in the context of machine learning. Specifically, the
problem is whether to ask for another label for an existing data
item or whether to acquire more data items, in order to maximize
the utility of the training data set for the machine learning algo-
rithm. Similar work has considered a pool of workers where the

most “informed” worker is asked for a label on the fly on the most
uncertain item [10, 11], and the accuracy of the worker is learned
as labels are obtained. Other work [18, 6] considers a setting where
the worker’s labels are provided beforehand, and the goal is to infer
the labels of items and the accuracy of different workers.

None of the previous studies deal with the problem of optimizing
the number of questions asked to the crowd. In large-scale human
computation, especially in marketplaces such as Mechanical Turk,
this metric is the most critical cost factor that needs to be optimized.
In our work so far we have not taken into account knowledge of or
discrepancies in worker accuracies, assuming a rapidly changing
and replaceable worker pool (as in Mechanical Turk). As future
work we will explore incorporating worker accuracy into our theory
and algorithms.
Filtering Applications: Several practical applications have used
heuristic strategies for filtering, typically a majority vote over a
fixed number of workers, in the context of sentiment analysis and
NLP tasks [15], categorization of URLs [3], search result evalua-
tion [2], and evaluation of competing translations [20]. In fact, for
all these strategies (which correspond to the triangular strategy de-
scribed earlier), we can replace them with an equivalent rectangular
strategy with much lower cost and the same answers. If the ladder
or linear algorithms are used, the cost can be reduced even further.
Statistical Hypothesis Testing: Our problem is also related to the
field of Statistical Hypothesis Testing [19]. This field is concerned
with the problem of trying to estimate whether a certain hypoth-
esis is true or not given the observed data. One such method of
estimation is to compute the LR (Likelihood Ratio), i.e., the ratio
of the probability that a given hypothesis is true given the data to
the probability that an alternative hypothesis is true given the same
data. Subsequently the LR is checked to see if it is statistically sig-
nificant. In our case, our two hypotheses (for a given data item)
are simply whether or not the item satisfies the filter. Unlike typi-
cal applications of hypothesis testing, where the goal is to estimate
the parameters of some distribution, here the distribution is pro-
vided to us (i.e., that the item satisfies the filter with probability s).
For Problem 2, in fact, our algorithm computes the LR to see if it is
greater than the threshold (τ ) for all reachable points. However, the
hypothesis testing techniques do not help us address the problem of
minimizing overall cost while testing a large set of data items.

9. CONCLUSION
We studied the problem of optimizing filtering of data using hu-

mans. Our optimal and heuristic algorithms efficiently find fil-
tering strategies that result in significant cost savings relative to
commonly-used strategies in crowdsourcing applications.

We focused our presentation primarily on the single-filter prob-
lem. Our current solution to the multiple-filters problem is opti-
mal, but has a large blow-up in representation; we hope to find a
more compact representation. Other future work includes incorpo-
rating human accuracy, handling correlations between filters in the
multiple-filters case, extending our techniques for the categoriza-
tion and clustering problems, and attempting to resolve the open
question of whether shapes are optimal for deterministic strategies.
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APPENDIX
A. CONVERSION ALGORITHM

Our algorithm proceeds in two steps: First, we prune unreach-
able regions. Second, we prune redundant regions.
Step 1: Pruning Unreachable Regions: We define y-path to be
the sequence of lines leading to the decision point from the point
on the y axis in the shape (and including the decision point), and x-
path to be the sequence of lines leading to the decision point from
the point on the x axis in the shape (and including the decision
point). We begin by pruning some of the the unreachable portions
from the shape. Notice that if the x-path ever goes “down”, we can
instead add a segment that goes “right” until we once again inter-
sect the shape. Additionally, if the y-path ever goes “left” we can
instead add a segment that goes upwards until we once again inter-

sect the shape. (The decision point may need to be moved if it is
unreachable.) After this procedure, we may assume that the x-path
now has segments that go right, upwards or to the left, while the
y-path now has segments that go right, upwards and downwards.
(Essentially all that we are saying is that for every shape with these
unreachable portions, there is another shape without it, with same
cost.) This also means that for a given y value there is a single point
on the x-path, and for a given x value, there is a single point on the
y-path.
Step 2: Pruning Redundant Regions: We now convert both x-
path and y-path into ladders. We describe our algorithm for the
x-path, the algorithm for the y-path follows similarly. (As we de-
scribe the algorithm, we also provide an informal explanation as to
why it works.) The algorithm is essentially a scan along the x axis
that incrementally builds the ladder.

We begin at x = 0, and scan the points corresponding to the x-
path for the given x coordinate. For some x = xi, we may find that
there are some points along the x-path that have the x coordinate
set to xi. Find one such point which has the largest such y (say yi).
Now, we add the portion (xi, 0) − (xi, yi) to the ladder. We can
do this because no matter what answers we get to the questions to
the right of (xi, 0), with a y coordinate less than yi, we will always
end at a Fail terminating point. Now, we ignore the x-path portion
below y = yi. (We can effectively assume that we moved the x
axis to y = yi (and the origin to (xi, yi)). We now repeat the same
procedure. Let us say the next x coordinate for which we find an
x-path point is x = xj . We add (xi, yi) − (xj , yi) to the ladder.
Let the point on x-path with the largest y value at xj be yj . We
then add (xj , yi)− (xj , yj) to the ladder. Subsequently, we ignore
all x-path points below yj .

In other words, for each x value, we always add a segment that
connects the ladder to the ladder until x− 1, and optionally a seg-
ment that goes from a smaller y value to a larger y value. We keep
building the ladder until we hit the decision point. Note that the
decision point is the point on the x-path with the largest y coordi-
nate, thus we will always hit it. In this manner, we maintain the
invariant that all points to the right of the ladder being constructed
are all points on x-path, and not on y-path. (Note that there cannot
be any points on the y-path to the right of this ladder apart from
the decision point because otherwise we will violate the property
that the shape has no unreachable regions.) Thus, we ensure that if
we ever reach a point on the lower ladder, we are sure to end at a
x-path point and not an y-path point.

Similarly, we build the upper ladder corresponding to the y-path.
Here the invariant being maintained is that all points above this
ladder must be y-path points. The decision point is then the point
on the y-path that has the largest x coordinate. The two ladders
meet at the decision point.


