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Abstract

While many statistical consensus methods now exist, rel-
atively little comparative benchmarking and integration of
techniques has made it increasingly difficult to determine
the current state-of-the-art, to evaluate the relative benefit of
new methods, to understand where specific problems merit
greater attention, and to measure field progress over time.
To make such comparative evaluation easier for everyone, we
present SQUARE, an open source shared task framework in-
cluding benchmark datasets, defined tasks, standard metrics,
and reference implementations with empirical results for sev-
eral popular methods. In addition to measuring performance
on a variety of public, real crowd datasets, the benchmark also
varies supervision and noise by manipulating training size
and labeling error. We envision SQUARE as dynamic and con-
tinually evolving, with new datasets and reference implemen-
tations being added according to community needs and inter-
est. We invite community contributions and participation.

1 Introduction

Nascent human computation and crowdsourcing (Quinn and
Bederson 2011; Law and von Ahn 2011; Lease 2011) is
transforming data collection practices in research and indus-
try. In this paper, we consider the popular statistical aggre-
gation task of offline consensus: given multiple noisy labels
per example, how do we infer the best consensus label?

While many consensus methods have been proposed, rel-
atively little comparative benchmarking and integration of
techniques has occurred. A variety of explanations can be
imagined. Some researchers may use consensus methods to
improve data quality for another research task with little in-
terest in studying consensus itself. A natural siloing effect of
research communities may lead researchers to develop and
share new consensus methods only within those communi-
ties they participate in. This would lessen awareness of tech-
niques from other communities, especially when research
is tightly-coupled with domain-specific tasks. For whatever
reason, it has become increasingly difficult to determine the
current state-of-the-art in consensus, to evaluate the relative
benefit of new methods, and to demonstrate progress.

In addition, relatively few reference implementations
or datasets have been shared. While many researchers in
other communities simply want to know the best consen-
sus method to use for a given task, lack of a clear answer
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and reference implementations has led to predominant use of
simple majority voting as the most common method in prac-
tice. Is this reasonable, or do we expect more sophisticated
methods would deliver significantly better performance?

In a recent talk on computational biology, David
Tse (2012) suggested a field’s progress is often driven not
by new algorithms, but by well-defined challenge problems
and metrics which drive innovation and enable comparative
evaluation. To ease such comparative evaluation of statistical
consensus methods, we present SQUARE (Statistical QUality
Assurance Robustness Evaluation), a benchmarking frame-
work with defined tasks, shared datasets, common metrics,
and reference implementations with empirical results for a
number of popular methods. Public shared implementations
and/or datasets are used when available, and we provide ref-
erence implementations for other methods.

We focus here on evaluating consensus methods which
do not require feature representations for examples. This
requires consensus to be computed purely on the basis of
worker behaviors and latent example properties, exclud-
ing hybrid solutions which couple automatic classification
with human computation. In addition to measuring per-
formance across datasets of varying scale and properties,
SQUARE varies degree of supervision, and we realistically
simulate varying noise by preserving empirical traits of
each dataset. Beyond empirical analysis, examining multi-
ple techniques in parallel further helps us to organize and
compare methods qualitatively, characterizing distinguish-
ing traits, new variants, and potential integration opportuni-
ties. We envision SQUARE' as a dynamic and evolving com-
munity resource, with new datasets and reference implemen-
tations added based on community needs and interest.

2 Datasets

We begin by identifying and describing a number of pub-
lic datasets that are online and provide the foundation for
SQUARE 1.0. An early design decision was to include only
datasets containing real crowd judgments, thereby increas-
ing validity of experimental findings. While synthetic data
can also be useful for sanity checks, carefully controlled
experiments, and benchmarking, relatively little synthetic
data has been shared. This likely stems from its lesser per-
ceived value and a belief that it can be easily re-generated
by others (provided that the generation process is fully and
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Figure 1.1: Top: a histogram shows the distribution of
worker accuracies across nine of the datasets considered.
Bottom: a histogram shows examples labeled per worker.

aptly described, and that reproduction does not introduce er-
rors). As Paritosh notes (2012), reproducibility is both im-
portant and challenging in practice, and we posit such repro-
ducibility is essential as a foundation for meaningful bench-
marking and analysis. GLAD (Whitehill et al. 2009) and
CUBAM (Welinder et al. 2010) valuably not only provide
source code for the methods evaluated, but also for gener-
ating the synthetic data used in reported experiments. Most
recently, Nguyen et al. (2013) present a different bench-
marking study and framework based on synthetic data.

We also include only datasets with ground-truth gold la-
bels for evaluation. We are agnostic here about the prove-
nance of these gold labels and refer the reader to the source
descriptions for more details. Nevertheless, the possibility of
varying gold purity (Klebanov and Beigman 2010) should be
considered in interpreting benchmark results. Not all studies
creating gold labels report inter-annotator agreement statis-
tics, and errors in gold could impact the comparative evalu-
ation of methods considered (Cormack and Kolcz 2009).

Table 2.1 provides summary statistics for each dataset.
Figure 1.1 plots a histogram of worker accuracies for nine
of the datasets, above a histogram of the number of exam-
ples labeled per worker. While AC2 shows the oft-discussed
exponential distribution of a few workers doing most of
the work (Grady and Lease 2010), SpamCF and WVSCM
show strikingly different work distributions. The empirical
worker accuracy distributions shown here provide an impor-
tant characterization of real crowd data, and our experiments
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Dataset Categories Examples Workers Labels MYV Acc.
AC2 4 333 269 3317 88.1
BM 2 1000 83 5000 69.6
HC 3 3275 722 18479 64.9
HCB 2 3275 722 18479 64.8
RTE 2 800 164 8000 91.9
SpamCF 2 100 150 2297 66.0
TEMP 2 462 76 4620 93.9
WB 2 108 39 4212 759
WSD 3 177 34 1770 99.6
WVSCM 2 159 17 1221 72.3

Table 2.1: Public datasets used in the SQUARE benchmark.

which artificially vary label noise (Section 4) carefully pre-
serve Figure 1.1’s empirical worker accuracy distributions.
NLP Datasets. The five Natural Language Processing
datasets described below span three tasks: binary classifica-
tion (BM, RTE, and TEMP), ordinal regression (AC2), and
multiple choice selection (WSD).
AC2 (Ipeirotis, Provost, and Wang 2010) includes AMT
judgments for website (ordinal) ratings {G, PG, R, X, B}.
BM (Mozafari et al. 2012) contains negative/positive sen-
timent labels {0, 1} assigned by AMT workers to tweets.
RTE, TEMP, and WSD (Snow et al. 2008) provide AMT
labels. RTE includes binary judgments for textual entailment
(i.e., whether one statement implies another). TEMP in-
cludes binary judgments for temporal ordering (i.e., whether
one event follows another). WSD includes ternary multiple
choice judgments (not multi-class classification) for select-
ing the right sense of word given an example usage.

Other Datasets

WVSCM (Whitehill et al. 2009) includes AMT binary
judgments distinguishing whether or not face images smile.

WB (Welinder et al. 2010) has AMT binary judgments
indicating whether or not a waterbird image shows a duck.

SpamCF (Ipeirotis 2010) includes binary AMT judg-
ments about whether or not an AMT HIT should be con-
sidered a “spam” task, according to their criteria.

HC (Buckley, Lease, and Smucker 2010; Tang and Lease
2011) has AMT ordinal graded relevance judgments for
pairs of search queries and Web pages: not relevant, rele-
vant, and highly-relevant. HCB conflates relevant classes to
produce only binary labels (Jung and Lease 2011; 2012).

3 Models & Algorithms

Many models and estimation/inference algorithms have
been proposed for offline consensus. Algorithms predomi-
nantly vary by modeling assumptions and complexity (Liu
and Wang 2012), as well as degree of supervision. Since
many workers label only a few items, more complex models
are particularly susceptible to the usual risks of poor esti-
mation and over-fitting when learning from sparse data. To
limit scope, we currently exclude online methods involving
data collection, as well as methods performing spammer de-
tection and removal. We also exclude consideration of ordi-
nal regression methods (Lakshminarayanan and Teh 2013),
though multi-class classification methods are applicable (if



not ideal). Finally, we do not consider open-ended tasks be-
yond multiple choice (Lin, Mausam, and Weld 2012).
While the space of proposed algorithms is vast (far be-
yond what space constraints permit us to cite, describe for-
mally, or evaluate), we consider a variety of well-known
methods which provide a representative baseline of cur-
rent practice. In particular, we include models which vary
from ignoring worker behavior entirely, modeling worker
behavior irrespective of the example, and modeling vary-
ing worker behavior as a function of example properties. We
briefly summarize and discuss each method below. Comple-
menting empirical analysis presented in Section 4, our con-
ceptual review of methods below emphasizes relationships
between them, distinguishing traits, and possible variants.

3.1 Majority Voting (MV)
MYV represents the simplest, oft-applied consensus method
which often performs remarkably well in practice. MV as-
sumes high quality workers are in the majority and operate
independently, and it does not model either worker behavior
or the annotation process. It is completely task-independent
with no estimation required, provides lightening-fast infer-
ence, and trivially generalizes from binary classification to
multi-class classification and multiple-choice. However, this
simplicity may come at the cost of lower label quality.
While many alternative tie-breaking strategies might be
used (e.g., using an informative class prior), our formulation
follows the usual practice of unbiased, random tie-breaking.
Similarly, while MV assumes high quality workers domi-
nate, a lightly-supervised variant (not reported) could de-
tect helpful vs. adversarial workers, filtering the latter out, or
with binary labeling, exploit anti-correlated labels by simply
“flipping” them (Kumar and Lease 2011).

3.2 ZenCrowd (ZC)

A natural extension to MV is to weight worker re-
sponses intelligently, e.g., by the worker’s correspond-
ing reliability/accuracy. Demartini, Difallah, and Cudré-
Mauroux (2012) do so, using Expectation Maximization
(EM) to simultaneously estimate labels and worker reliabil-
ity. Their approach appears to be derived from first princi-
ples rather than earlier EM consensus methods (Dawid and
Skene 1979; Smyth et al. 1995), or Snow et al. (2008)’s
passing mention of such a simplified model. Like MV, ZC
makes simplifying assumptions of workers acting indepen-
dently and without modeling varying worker behavior as a
function of each example’s true class assignment. The mod-
eling of one parameter per worker is more complex than
MYV but simpler than estimating a full confusion matrix per
worker. This single parameter per worker also enables de-
tection and handling of adversarial workers, which MV can-
not do without additional light supervision. An advantage of
having worker reliability as the only free parameter, besides
reduced model complexity for sparse data, is that the model
trivially generalizes to multi-class or multiple choice tasks
with no increase in complexity (though by the same token
may be less effective with increasing classes or choices).
While ZC is unsupervised as proposed, it can be fully-
supervised by maximum-likelihood (ML), as in Snow et
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al. (2008), lightly-supervised by only providing an infor-
mative class prior, or semi-supervised by using gold la-
bels where available and standard EM estimation other-
wise (Wang, Ipeirotis, and Provost 2011).

3.3 Dawid and Skene (DS) & Naive Bayes (NB)

Dawid and Skene (1979)’s classic approach models a con-
fusion matrix for each worker and a class prior, using EM
to simultaneously estimate labels, confusion matrices, and
the prior. Snow et al. (2008) adopt the same model but
consider the fully-supervised case of ML estimation with
Laplacian (add-one) smoothing. Like MV and ZC, work-
ers are assumed to operate independently (Wang, Ipeirotis,
and Provost 2011). Unlike MV and ZC, confusion matrices
let DS/NB capture differential worker error behavior as a
function of each example’s true class. For example, unlike
MYV and ZC, DS/NB can detect and model a worker who
produced perfect labels for examples of one class and oppo-
site (adversarial) labels for the other class. While this greater
modeling power can exploit more specialized statistics, spar-
sity can be more problematic. Also, while confusion matri-
ces easily generalize to the multi-class labeling task, they do
not generalize to the multiple choice selection task, where
available choices are independent across examples.

Like ZC, DS/NB can be generalized to semi-supervised
and lightly-supervised cases. A variant estimation proce-
dure can distinguish correctable bias vs. unrecoverable
noise (Wang, Ipeirotis, and Provost 2011). Whereas MV is
agnostic of worker behavior, and ZC models worker behav-
ior as irrespective of the input, DS/NB model varying worker
behavior given an example’s true underlying class. More-
over, whereas ZC models a single parameter per worker,
DS/NB model one free parameter per class per worker.

34 GLAD

Like ZC and unlike DS/NB, GLAD (Whitehill et al. 2009)
models only a single parameter per worker (the expertise ),
with similar tradeoffs in modeling complexity. Like ZC/DS,
GLAD uses unsupervised model estimation via EM, but es-
timation is more complex, requiring gradient ascent in each
M-step. Like DS/NB, GLAD models varying worker behav-
ior as a function of the input example. However, rather than
considering the underlying class, GLAD models example
difficulty 8. An extension to multi-class is described (but
not found in their public implementation). Like MV and ZC,
GLAD easily generalizes to multi-choice selection classifi-
cation. Like ZC and DS/NB, gold data may be used for su-
pervision when available (e.g., fixing known labels in EM).

3.5 Raykar 2010 (RY)

DS and NB both estimate a confusion matrix, while DS im-
poses a class prior and NB uses Laplacian (add-one) smooth-
ing. Raykar et al. (2010) propose a Bayesian approach to
add worker specific priors for each class. In the case of bi-
nary labels, each worker is modeled to have bias toward the
positive class «; (sensitivity) and toward the negative class
Bi (specificity). A Beta prior is assumed for each parameter.
As with ZC, DS, and GLAD, an unsupervised EM method



is derived to simultaneously estimate labels and model pa-
rameters (like GLAD, involving gradient descent).

RY’s novelty lies in using an automatic classifier to pre-
dict labels, but this classifier also requires a feature repre-
sentation of examples. However, when such a representation
does not exist, as here, the method falls back to maximum-
a-posteriori (MAP) estimation on DS, including priors on
worker bias to each class. The multi-class extension is made
possible by imposing Dirichlet priors, on each worker’s class
bias, and the class prior itself. However, the presence of class
specific parameters inhibits extension to multi-choice, where
the available choices are independent for each example.

3.6 CUBAM

Methods above model annotator noise and expertise
(GLAD, ZC), annotator bias (DS,NB,ZC), and example dif-
ficulty (GLAD). Welinder et al. (2010) incorporate all of
these along with a normalized weight vector for each worker,
where each weight indicates relevance to the worker. Like
prior assignments in RY, a Bayesian approach adds pri-
ors to each parameter. Worker labels are determined by
an annotator-specific threshold 7; on the projection of the
noisy/corrupted input x; and worker specific weight vector
w;. Probability of label assignments is maximized by un-
supervised MAP estimation on the parameters, performing
alternating optimization on x; and worker-specific parame-
ters < w;, 7; > using gradient ascent. Apart from label esti-
mates, the surface defined by projection U)TT]‘ enables view-
ing worker groupings of bias and expertise. CUBAM can
generalize to multi-class classification but not multi-choice
selection. No direct supervised extension is apparent.

4 Experimental Setup

This section describes our benchmarking setup for compar-
ative evaluation of consensus methods (Section 3). We vary:
1) the dataset used and its associated task; 2) the degree of
supervision; and 3) the level of annotation noise.

1. Data and Task. All experiments are based upon real-
world crowdsourcing datasets. Whereas our first set of ex-
periments measure performance on each dataset as-is, our
second set of experiments simulate carefully-controlled in-
crease or decrease in annotation noise, as discussed below.

2. Degree of supervision. We evaluate unsupervised per-
formance and 5 degrees of supervision: 10%, 20%, 50%,
80%, and 90%. In each case, we use cross-fold validation,
i.e. for the 10% supervision setting, estimation uses 10%
train data and is evaluated on the remaining 90%, this proce-
dure is repeated across the other nine folds, finally, average
performance across the folds is reported. We report unsu-
pervised performance on the 10-fold cross-validation setup,
using 90% of examples in each fold for estimation (without
supervision) and report average performance.

In the wunsupervised setting, uninformed, task-
independent hyper-parameters and class priors are unlikely
to be optimal. While one might optimize these param-
eters by maximizing likelihood over random restarts or
grid search, we do not attempt to do so. Instead, with
light-supervision, we assume no examples are labeled, but
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informative priors are provided (matching the training set
empirical distribution). Finally, full-supervision assumes
gold-labeled examples are provided. To evaluate ZC, RY,
DS and GLAD methods under full-supervision, labels
are predicted for all examples (without supervision) but
replaced by gold labels on training examples.

3. Label noise. We present two sets of experiments.
Whereas our first set of experiments measure performance
on each real-world dataset as-is (Section 5.1), our second
set of experiments (Section 5.2) simulate more or less la-
bel noise for each dataset while rigorously maximizing data-
realism (and thereby the validity and generalization of em-
pirical findings). Data-realism is maximized by: 1) preserv-
ing which workers labeled which examples in each dataset,
altering only the labels themselves; and 2) measuring the
variance of each dataset’s worker accuracy empirical dis-
tribution and using this variance to parameterize a normal
distribution from which worker accuracies are sampled.

Mean worker accuracy is varied from 0.55 to 0.95 by
0.10. We define a normal distribution with this mean and
with variance following the dataset’s empirical distribution
of worker accuracies. For each real worker in the dataset,
we discard his actual labels and instead sample a new accu-
racy w; for him from this distribution. The worker’s labels
are then re-generated, matching gold with probability w;. In
the case of disagreement and multiple categories to choose
from, a category assignment is made at random with no bias.
Experimental setup otherwise follows our earlier setup.

Evaluation metrics. Presently the benchmark includes
only accuracy and F; metrics. While a wide variety of dif-
ferent metrics might be assessed to valuably measure perfor-
mance under alternative use cases, a competing and impor-
tant goal of any new benchmark is to simplify understanding
and ease adoption. This led us to intentionally restrict con-
sideration here to two simple and well-known metrics. That
said, we do plan to expand the set of metrics in future work,
such as to varying loss functions and the benefit vs. cost
tradeoff of improving performance by collecting more gold
examples (e.g., from an expert) for supervision. Significance
testing is performed using a two-tailed, non-parametric per-
mutation test (Smucker, Allan, and Carterette 2007).

Implementations. We used existing public implementa-
tions of DS, GLAD and CUBAM algorithms. We provide
open source reference implementations in SQUARE for the
other methods considered: MV, NB, ZC, and RY.

4.1 Experimental Details of Methods

A variety of important implementation details impact our
evaluation of methods. We discuss these details here.

Z.C in its proposed form does not impose priors on param-
eters (Demartini, Difallah, and Cudré-Mauroux 2012). Our
implementation does impose priors on both the label cate-
gory distribution and worker reliabilities. A Beta prior was
assumed for worker reliability, and a Dirichlet prior was im-
posed on label categories. In each experimental setup, the
workers were assigned the same prior distribution. In the un-
supervised setup, the prior distribution on worker reliability
had a mean of 0.7 and a variance of 0.3 (as with RY below)
and the label categories were assumed to be uniformly dis-



tributed. In the lightly-supervised and fully-supervised se-
tups, both the worker reliability and label category prior pa-
rameters were estimated from the train split. The worker re-
liability prior parameters were set by computing average ML
estimates for each worker’s reliability in the train split.

NB was implemented to learn each worker’s full confu-
sion matrix, with Laplacian (add-one) smoothing (Snow et
al. 2008). The algorithm was extended for multi-class using
a one-vs-all approach. Since NB strictly depends upon train-
ing data, it was used only in the fully-supervised setting.

RY was implemented for binary labeling (Raykar et al.
2010). Beta priors were imposed on worker specificity, sen-
sitivity and positive category prevalence. When unsuper-
vised, the worker sensitivity prior was set to have mean 0.7
and variance of 0.3 (as with ZC above), the same distribution
was assumed for specificity, and the label categories were
assumed to be uniformly distributed. The lightly-supervised
and fully-supervised settings had the prior parameters set to
compute average ML estimates for each worker from the
train split. Since RY was implemented for binary labeling,
results are limited to datasets with two categories.

CUBAM, DS, and GLAD. Lacking supervision,
CUBAM hyper-parameters were assigned default priors
from the the implementation. Only the unsupervised case
was evaluated since the hyper-parameters associated with
distributions modeling question transformation, worker
competence cannot be inferred from the train splits used.

DS predicts labels without any priors. Under the lightly-
supervised and fully-supervised settings, category priors
were assigned ML estimates inferred from the training fold.

GLAD is assigned uniform class label likelihood, with
priors of 1 for task difficulty and 0.7 for worker expertise.
Under the lightly-supervised and fully-supervised settings,
class priors were set by ML estimates inferred from the
training fold. Worker expertise was set as the average worker
accuracy inferred from the training set, and as in the other
implementations, the same prior was assigned to all work-
ers. Finally the prior on task difficulty were set to 1.

Both CUBAM and GLAD implementations support only
binary class estimation, hence results from the algorithms
are reported only on datasets with binary labels.

5 Results

This section presents benchmarking results of methods
across datasets and tasks, following the experimental setup
described in Section 4. Whereas our first set of experiments
measure performance on each real-world dataset as-is (Sec-
tion 5.1), our second set of experiments (Section 5.2) simu-
lates varying label noise for each dataset.

5.1 Results on Unmodified Datasets

We first report performance on unmodified datasets. Statis-
tical significance testing is limited to results in Table 5.3.
Unsupervised. Figure 4.1 plots performance of each
method across each dataset, showing relative accuracy in
comparison to the baseline accuracy of majority vote (MV).
Average performance across datasets is reported both for rel-
ative accuracy to MV (Figure 4.1 far right), and for actual ac-
curacy and F7 in Table 5.1. Classic DS achieves top average
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Figure 4.1: Unsupervised performance of consensus meth-
ods, as measured across seven binary labeled real datasets.
Accuracy is plotted relative to a Majority Vote (MV) base-
line. Average performance of methods across all datasets is
shown at the right. On multiple choice WSD and multi-class
AC2 and HC, results are reported only for DS and ZC.

performance for both metrics. Each method except RY and
ZC also outperforms the others on at least one dataset. More
striking, on SpamCF and TEMP datasets, methods show no
improvement over baseline MV. Evaluation of the methods
under the unsupervised setting, when averaged across all bi-
nary labeled datasets, showed DS to outperform the rest of
the methods, both on avg. accuracy and F} score; Table 5.1
tabulates results on all the methods.

Light-supervision. Figure 5.1 plots MV relative perfor-
mance for each dataset. The effect of varying supervision is
shown in a separate plot for each dataset. Table 5.1 presents
average results across all datasets under varying supervi-
sion. DS is seen to outperform other methods with 10%-
50% supervision on avg. accuracy and Fj score, but RY
performs best at 90% supervision. 80% supervision has RY
and DS marginally outperforming each other on avg. accu-
racy and F score respectively. Performance on each indi-
vidual dataset, as observed in the unsupervised setting, did
not highlight any individual method consistently perform-
ing best. Observations made earlier in the unsupervised case
with regard to SpamCF and TEMP also carry-over here, with
no improvement over MV for the first two.

Full-Supervision. As with previous light-supervision re-
sults, Figure 5.2 plots MV relative performance for each
dataset. The effect of varying supervision is shown in a sep-
arate plot for each dataset. Table 5.1 presents average results
across all datasets under varying supervision.

RY outperforms other methods with 50% or more super-
vision, contrasting earlier results where DS was consistently
best. Note that DS outperformed the other methods for 10%
and 20% supervision, but bettered RY only slightly. While
NB was expected to outperform other methods with increas-
ing supervision, DS and RY were seen to perform better.

Performance on individual datasets follows the same
trend as in the averaged results, with the exception of
WVSCM, where GLAD was superior. As with no super-
vision and light-supervision, TEMP shows similar trends,
though MV outperformed DS and NB on SpamCFE.
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Figure 5.1: Light-supervision. Relative accuracy vs. baseline MV of 4 methods (DS, ZY, RY, and GLAD) across 8 (unmodified)
crowd datasets (BM, HCB, RTE, SpamCF, WB, WVSCM, AC2, and HC) for 5 training conditions: 10%, 20%, 50%, 80%, and
90%. For multi-class AC2 and HC datasets, only multi-class methods DS and ZY are shown. Note the y-axis scale varies across
plots to show dataset-dependent relative differences. Section 4’s Degree of supervision provides details regarding supervision.
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Figure 5.2: Full-supervision. Relative accuracy vs. baseline MV with full-supervision. See Figure 5.1 caption for further detail.

Light-Supervision Full-Supevision
Method Metric | No Supervision | 10% 20% 50% 80% 90% | 10% 20% 50% 80% 90% Count
MV Acc 79.2 792 792 792 793 793|792 792 792 793 793 0
Fy 71.5 715 715 772 780 781 | 775 715 772 78.0 8.1 0
70 Acc 77.2 763 77.1 784 789 789 | 768 77.6 787 804 80.8 0
Fy 76.4 742 757 768 777 717 | 754 76.1 77.0 792 79.6 0
GLAD Ace 78.7 78.1 780 782 789 78.0 | 783 785 79.2 798 803 0
Fy 71.3 76.8 767 77.0 786 71.6 | 769 771 77.6 790 795 0
NB Ace - - - - - - 80.3 80.7 80.5 80.7 80.5 0
Fy - - - - - - 79.1  79.0 785 785 789 0
DS Ace 82.2 823 822 820 804 795|822 822 821 818 819 6
Fy 80.2 802 800 794 789 779|801 80.0 796 792 799 7
RY Acc 80.9 81.6 81.6 815 805 80.1 | 819 820 825 823 823 5
Fy 79.1 796 795 792 788 788 | 798 799 799 804 804 4
Acc 81.5 - - - - - - - - - - 0
CUBAM I 79.8 ) ] ] ] ) ) ] ] ] ) 0

Table 5.1: Results on unmodified crowd datasets. Accuracy and F results when averaged over all seven binary datasets (BM,
HCB, RTE, SpamCF, TEMP, WB, and WVSCM) for varying supervision fype (none, light, and full) and amount (10%, 20%,
50%, 80%, and 90%). Maximum values for each metric across methods in each column are bolded (Accuracy) and underlined
(F1). As a simple summary measure, the final column counts the number of result columns (out of 11) in which a given method
achieves the maximum value for each metric. Results of statistical significance testing (50% condition only) appear in Table 5.3.
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Discussion. CUBAM, with relatively weaker assump-
tions, was expected to perform best. This was seen on HCB,
one of the noisier datasets considered (see Figure 1.1 for
its worker accuracy histogram). However, on SpamCF, a
dataset with a similar noise profile to HCB, all methods com-
parable performance to MV. A possible explanation is that
SpamCF is far smaller than HCB, challenging estimation.
On the flip side, on TEMP and RTE datasets, where work-
ers are mostly accurate, MV appears sufficient, with more
complex models providing little or no improvement.

Across experimental setups, GLAD consistently per-
formed best on WVSCM but was outperformed on other
datasets. ZC performed similarly, and both model accu-
racy while bias is ignored. This highlights the usual value
of using available domain knowledge and tuning hyper-
parameters intelligently. Of course, increasingly complex
models make estimation more difficult, and beyond the esti-
mation challenge, performance is also ultimately limited by
modeling capability. For datasets in which its sufficient to
model worker accuracies (i.e., there exists a close to opti-
mal positive worker weight configuration), GLAD and ZC
perform well with informed priors or supervision. But they
appear to be less robust on datasets with biased or adver-
sarial workers, where methods with weak assumptions like
CUBAM appear to thrive. The consistent performance of
RY, across datasets, when priors were well informed or when
further consolidated with minimal gold standard, suggests
sufficiency in model complexity to generalize over most of
the real datasets considered. Consistent performance of DS,
which is similar to RY (except for the inclusion of worker
priors) further corroborates this analysis.

5.2 Results With Varying Noise

Whereas experiments in Section 5.1 measured performance
on each real-world dataset as-is, we now present results of
carefully varying the label noise for each dataset. We con-
sider two levels of supervision, 20% and 80%. Table 5.2 re-
ports results across noise conditions and methods. We do not
report statistical significance of noise-based experiments.

With no supervision, RY performs best, contrasting re-
sults in the original setting where DS was superior. ZC is
seen to perform considerably better compared to the per-
formance with original labels. Another contrasting observa-
tion is the steep degradation in CUBAM performance with
noise. With light-supervision, DS is seen to be the best per-
forming method under noise; RY performs best under the
noisiest condition. With full-supervision, we see that under
the noisier conditions, RY performs best with 20% supervi-
sion while DS outperforms the rest with 80% supervision.
The performance improved vastly across methods, even for
low levels of supervision. The relative performance of NB to
lightly-supervised and fully-supervised methods shows the
same trend observed on unmodified datasets.

Discussion. MV shows little resilience to high to modest
noise levels (55% to 75%), where it is consistently outper-
formed by other methods. This suggests common use of MV
for its simplicity may sacrifice quality in such cases. How-
ever, differences are far more pronounced here than with
original data, suggesting risk of evaluation artifact. With low
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Table 5.3: Statistical significance. For each (unmodified)
binary dataset (BM, HCB, RTE, SpamCF, TEMP, WB, and
WVSCM) and quality metric (Accuracy and F}), we re-
port all (tied) methods achieving maximum quality accord-
ing to statistical significance tests (Section 4). Methods
are indicated by number (1=MV, 2=7ZC, 3=GLAD, 4=NB,
5=DS, 6=RY, and 7=CUBAM) and supervision type by letter
(u=none, I=light, and f=full). For each dataset-metric condi-
tion, the top scoring method-type pair is shown first in bold,
followed by all tied method-type pairs according to signifi-
cance tests. Given space constraints, statistical significance
is reported only for the 50% supervision amount condition.
The final column ignores supervision fype distinctions.

noise (e.g., 95%), differences are far smaller, and moreover,
the classic DS method performs near-flawlessly.

While GLAD and ZC perform similarly on unmod-
ified datasets, the relative superiority between methods
is switched. Taken with the lackluster performance of
CUBAM, this further evidences method sensitivity to dataset
characteristics: greater model complexity does not necessar-
ily produce better predictions. As highlighted in Section 5.1,
setting intelligent priors on parameters when possible from
domain knowledge matters. This is seen with unsupervised
RY outperforming DS, as consequence of preset priors. In
the lightly supervised setting, however, RY clearly shows its
dependence on priors, while DS remains consistent, with no
imposed prior distribution of worker bias.

6 Discussion & Conclusion

We began this paper by noting continued, frequent use of
simple majority voting (MV) to produce consensus labels
from crowd data, despite the many more sophisticated meth-
ods that have been proposed. To be provocative, does this
practice reflect mere ignorance, naivety, or laziness, or do
more sophisticated methods offer only modest benefit which
is simply not worth the bother? Should “experts” of new
methods make stronger claims of superior quality and advo-
cate wider adoption as “best practices” for crowdsourcing?
We observed in our benchmark tests that MV was often
outperformed by some other method. Moreover, for any-
one willing to tolerate a modicum of additional complex-
ity in modeling worker bias, the classic DS and its exten-



No Supervision Light-Supervision Full-Supervision
Avg. Worker Accuracy Avg. Worker Accuracy Avg. Worker Accuracy

Method Fold Size | 55% 65% 75% 85% 95% | 55% 65% 75% 85% 95% | 55% 65% 75% 85% 95% | Count
MV 20% 451 672 824 936 97.8 |451 672 824 93.6 978|451 672 824 93.6 978 0
80% - - - - - 451 672 824 936 978|451 672 824 936 978 0
70 20% 56.6 77.8 852 992 998|559 709 851 991 998 | 662 859 959 991 99.7 5
80% - - - - - 57.8 67.7 86.6 983 99.6 | 859 90.0 954 99.0 99.9 5
GLAD 20% 526 703 848 984 986 | 537 70.8 850 984 987|638 71.0 873 986 99.7 0
80% - - - - - 47.1 693 859 97.8 989 | 69.6 8l.1 957 984 99.7 0
NB 20% - - - - - - - - - - 822 86.1 938 972 988 0
80% - - - - - - - - - - 84.0 88.0 950 98.6 99.6 0
DS 20% 450 853 912 991 999 | 483 852 913 990 99.7 | 753 89.8 956 99.1 99.9 5
80% - - - - - 47.1 82,0 921 98.0 994 | 862 90.7 960 99.0 998 7
RY 20% 569 86.1 953 99.1 99.7 591 699 869 989 998|831 90.0 958 989 99.8 7
80% - - - - - 710 789 89.1 981 994 | 857 903 953 989 99.7 4
) 20% 524 676 832 977 979 - - - - - - - - - - 0
CUBAM 80% 3 ) : ) : ) } ) } ) ] ) } ) . 0

Table 5.2: Results with injected noise. Accuracy achieved by each method is averaged across all seven binary datasets (BM,
HCB, RTE, SpamCF, TEMP, WB, and WVSCM) for three supervision fype conditions (none, light, and full) and five simulated
worker accuracy conditions (55%, 65%, 75%, 85%, and 95%). Injected noise respects empirical dataset properties (Section 4).
For light and full-supervision, we report results from training on 20% vs. 80% of each dataset (5-fold cross-validation). In
case of no supervision, folds are not used, with results shown arbitrarily in the 20% fold row. While most methods can be
evaluated across supervision type conditions, NB must be fully-supervised and CUBAM unsupervised. For each result column,
the maximum accuracy achieved for each method-fold pair is shown in bold. The final column simply counts the number of
result columns (out of 15) in which the maximum value is achieved for each fold. Table 5.3 reports statistical significance.

sion RY (which effectively just adds priors on parameters)
performed remarkably well across our tests. Is it a failing
of SQUARE’s current benchmark tests that we do not ob-
serve even more impressive improvements from other, more
sophisticated methods? For example, we did not consider
hybrid approaches requiring feature representations, nor did
we consider worker filtering approaches prior to consensus.

We invite contributions of: 1) better benchmark tests
which would more strikingly reveal such improvements; 2)
better tuning of included methods in order to maximize their
full potential; or 3) additional methods we did not con-
sider. The value of demonstrating clear progress to poten-
tial adopters and sponsors would seem to be important for
our field to tackle, as well as to better understand where our
clear success stories are to date and identify the particular
challenge cases motivating greater attention.

On the other hand, the fact that each method was seen
to outperform every other method in some condition seems
to validate the need both for producing a diversity of ap-
proaches, and for multi-dataset testing in making stronger
claims of improvement and generalizable performance. The
degree of empirical diversity observed was relatively sur-
prising since we did not explicitly construct diverse tests,
but merely relied upon “found” methods and data.

While using synthetic data usefully enables carefully con-
trolled experimentation, it is important that we continue to
strive and assess its realism when using it for comparative
evaluation of methods. While our own noise simulation uti-
lized the actual empirical variance of each dataset in param-
eterizing the normal distribution from which worker accura-
cies were sampled, it would have been better to sample from
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the empirical distribution directly without assuming normal-
ity, which worker accuracy histograms clearly show to sim-
plify reality. It would be informative to survey, implement,
and assess synthetic data conditions from prior studies, and
richer descriptive statistics and better models of worker be-
havior (Klebanov and Beigman 2010) could provide new
insights with intrinsic value, enable more realistic simula-
tion, and let us benefit from faster simulation-based evalu-
ations while preserving confidence of experimental validity
and findings carrying-over to operational settings.

Qualitative comparison of techniques helped us to charac-
terize distinguishing traits, new variants, and integration op-
portunities. Like other open source benchmarks, we envision
SQUARE as dynamic and continually evolving, with new
tasks, datasets, and reference implementations being added
based on community needs and interest. In an independent
and parallel effort, Nguyen et al. (2013) recently released
another open source benchmark, based on synthetic data,
which implements or integrates a subset of methods found
in SQUARE plus ITER (Karger, Oh, and Shah 2011) and
ELICE (Khattak and Salleb-Aouissi 2011). Another consen-
sus method with reference implementation, MACE (Hovy et
al. 2013), was also recently published. We will continue to
update SQUARE’s website as a central community resource
as new developments become known to us, and we invite
others to join us in advancing this community benchmark.
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