THE EMERGING ROLE OF DATA SCIENTISTS ON SOFTWARE DEVELOPMENT TEAMS

AUTHOR: MIRYUNG KIM UCLA

PRESENTER: SI CHEN SFU (301308915)

THE SEXIEST JOB IN 21ST CENTURY

Top one of the 25 Best Jobs in America 2016 released by Glassdoor

overwhelming demand 60% greater

rising salaries \$116,840 A YEAR

top Glassdoor survey for best work-life balance

really challenges

WHO DATA SCIENTISTS ARE ?

- Definition: The people who do COLLECTION & ANALYSIS
- Main mission: transform data into insight,
 providing guidance for leaders to take action
- Example: the use of user telemetry data to redesign Windows Explorer (a tool for file management) for Windows 8.

WHY IT IS NEEDED IN SOFTWARE DEVELOPMENT TEAMS

THE TREND OF DATA-DRIVEN ENGINEERING DECISIONS (RATHER THAN RELYING ON GUT FEEL)

DATA == PROFITS

THE VALUE OF

USERS' DATA

EMERGING ROLE

• Experimental design

• Statistical reasoning

Data collection

EXPERIMENTAL DESIGN

DESIGNING EXPERIMENTS WITH REAL USER DATA:

Customer usage data is easier to obtain and more authentic

DEMAND FOR STATISTICAL RIGOR

- formal hypothesis testing,
- report confidence intervals,
- determine baselines through normalization.

- Data cleaning
- data shaping

80% of data science work requires "janitor work"

WHAT DO THEY DO IN DAILY LIFE

• PROBLEMS THAT THEY WORK ON:

Performance Regression

Server Anomaly Detection

Fault Localization and Root Cause Analysis Failure Rate Estimation

Bug Prioritization

Cost Benefit Analysis

Customer Understanding

WHAT DO THEY DO IN DAILY LIFE

• MAIN ACTIVITIES:

data collection

data analysis

data use and dissemination

TABLE 2. ACTIVITIES THAT PARTICIPANTS STATED THEY DID THEMSELVES (■) OR MANAGED (□)

		P1	P2	P3	P4	P5	P6	P7	P8	P9	P10	P11	P12	P13	P14	P15	P16
Collecting	Building the data collection platform																
	Injecting telemetry																
	Building the experimentation platform																
Analyzing	Data merging and cleaning																
	Sampling																
	Shaping, feature selection																
	Defining sensible metrics																
	Building predictive models																
	Defining ground truth																
	Hypothesis testing																
Using and	Operationalizing models																
Disseminating	Defining actions and triggers																
	Applying insights/models to business																

- new features
- deprecate unused features
- releasing a product two weeks earlier than the expected schedule
- reduce crash rates
- reducing development operation cost

- INSIGHT PROVIDER
- MODELING SPECIALISTS
- PLATFORM BUILDERS
- POLYMATHS
- TEAM LEADERS

MODELING SPECIALISTS

- build predictive models
- strong background in machine learning
- "translate" findings into business values

PLATFORM BUILDERS

- build a data engineering platform
- strong background in big data systems

TEAM LEADERS

- senior data scientists who run their own data science teams
- act as data science "evangelists,"
- work with senior company leaders

WHO THEY ARE HIRING?

• REQUIREMENTS OF EDUCATION AND TRAINING BACKGROUND:

4 years cs degree(11/16): not necessary

interdisciplinary backgrounds: statistics, physics, math...

higher education degrees (11/16): MS & PhD

Skill sets: self-trained

strong statistics background: some requires

