Using the crowd for Top-k
and Group-by Queries

Outline

° Problem Definition
* Related Work

° Error Model

* Max and Top-k
* Clustering

* Clustering with correlated types and values

The Problem

e Group photos of same
person type

* Arrange photos within SELECT most-recent(photo)

same group as per FROM photoDB
8 pasp WHERE singlePerson(photo)
age(value) GROUP BY Person(photo)

* Clustering — Type
qguestions [Pic1=Pic27?]

* Max or Top-k — Value
qguestions [Pic1>Pic27?]

Why Crowdsource this

* Photo processing software can isolate distinct faces

* When tagged, software can group faces
* But, not all faces in photoDB are tagged
* Grouping of photos ,20 years apart difficult

* Timestamp on photos not trustworthy

Related Work — Focus Points

* Which element has maximum likelihood of being max?

* Which future comparisons are most effective?
 Evaluate heuristics by tuning time, cost and quality
* Sorting using Qurk — Batching and Rating pairs

* Focus on theoretical results

Formalising the Problem

* Consider n elements x1,x2,...xn
* Each xi has type associated type(xi)
* Each xi has value associated value(xi)
* Jdistinct types or clusters
* Jclusters balanced if there are n/J elements per cluster

* photoDB - J is the number of distinct faces

* Since some people appear in more photos J clusters not balanced

Questions to the crowd

[type(x1)=type(x2)]

Do these pictures contain the same person? v~
Who is this person? X

[val(x1)>val(x2)]

Which is the most recent picture of this person? v~
What is the age in each picture? *

Handling Human Error

* Constant Error Model : Based on assumption that all
guestions are answered correctly with constant probability
(>0.5). Better than random Yes/No answer (=0.5)

* Variable Error Model : Based on how close data elements
are in ordering of interest

Eg: Baby and high school graduate - probability of error low.
Pictures taken 1 week apart - probability of error high

Given two distinct elements x;, x; such that x; > x;

Probability of error i.e..

1
fG-0

Pr[x; is returned as the larger element] < -e (1)

.where f(1) >2 and e>0

When items are next to each other in order, (j-i) =1

For some (j-i), f(j-i) =2

then Variable Error Model = Constant Error model

Finding max

* When no errors (n-1) questions asked to find max

* Constant error model : Pr > |1 — 6]
O(nlog})

* Variable error model : Pr > [1 — §]

o(210s)

Max and top-k — Tournament Approach

Algorithm 1 Algorithm for finding the maximum element.

l;
2:

3

— Choose a random permutation [T of the elements z1, - - - , z,,.

for levels L = 1 to log n in the comparison tree do { leaves
are in level (), the root is in level log n*)
~If L < log X (lower log X levels), do one comparison at
each internal node. Propagate the winners to the level above.
~1f L > log X' (upper log ¢ levels), do Vi, comparison
at each internal node. Take majority vote and propagate the
winners to the level above]

- end for

return The element at the root node of the comparison tree.

e

n N sl
E1]]
Figure |: (a) General framework of Algorithm | with a cofnparison

e, (b) Amplified single X -tree with X nodes and (lower) log X
levels.

Analysis of Upper Levels

* Analyse upper log © levels

* Apply constant error model

*Pr > % + e finding max \'m

* O (3 log3) value questions

Analysis of Lower Levels

* Partition xq ... x,, into block of size X

* Each block forms a comparison tree called
X-Tree

o %such X-Trees g

-~
X=16=20 -

* Assuming x4 is max, consider the left most
path

Sample X-Tree

® Pr[x; never eliminated in comparison] = [1 — 56]

Complexity at Lower Levels

* Number of questions in log X is bounded by n

* It can be shown that% = 21;ng = 0(2)

* Combining this for overall complexity, we get

n 1
n + 0(5 log 5)
..number of questions

* Number of questions improve for linear and exponential
functions in variable error model

Finding top-k

* Approach similar as finding max (tournament approach)

* Assume k< n/2
* Split tree into lower log X levels and upper log n/X levels

* In the lower levels , do one comparison at each internal
node

* Each top k element winner in their X-Tree

Number of Questions asked for top-k

* Use the corollary to the theorem defining complexity for
finding max

‘n+ 0(—10 —) + 0 (—log) value questions

* Number of questions reduces when the function used in
variable error model is linear or exponential

Clustering
* Motivated by Group — By queries in SQL

* Do two photos capture the same person or same place

* Finding bound for the number of questions necessary and
sufficient to find J clusters

* We use the Constant Error Model

. 1
Prlanswering correctly] = - +e

Clustering Algorithm

P 1 1 1 1 Algorithm 2 Algorithm for clustering with only type questions
PICk fIrSt element y In IISt L (given n elements, and the values of €, 4 > 0))
1: — List the elements in arbitrary order L.

. — Initialize a set for clusters P = ().
: while L is not empty do

* [terate over the list, asking :
ue St i on t e (X) = t e () ; Ilafr:dyet;:n?:n?sri?&?]:]hi“;;gtype as y among the remain-
q yp yp y ing elements in L as follows: For each remaining ele-

ment x in L, ask the type question type(z) = type(y)
D{Elf{lug <)) times. 1If the majority of the answers are

¢ 0 (eiz (log %)) SUCh que5ti0n5 “yes”, x, y are decided to have the same type: otherwise they

are decided to have different types.
6: Collect all elements of the same type, make a cluster €', add

: For a” matCh|ng ItemS) add . enaﬂ‘i“ﬂsddeletetheseelememsfmm_{,_
to list P and delete them from — ——====
L

Analysis of Clustering Algorithm

Pr[determining clusters correctly] > 1 — 2

* Outer while loop would be runJtimesand] < n | or O(J)]

* Inner for loop at most n times . Hence total number of questions

03 (1087))

Total Complexity O(n] (log %))

Clustering with Correlated Types and
Values

* Exploiting the fact that values and types could be correlated for
datasets .

* Eg: Prices(value) of hotels could be correlated to Ratings (type)

Name Hotel A1 Hotel A2 |Hotel A3 |HotelB1 |HotelB2 |[HotelB3 |HotelCl |HotelC2 [Hotel C3

Quality 3 -Star 3 -Star 3 -Star 4 -Star 4 -Star 4 -Star 5- Star 5-Star 5-Star
Price [s0s 555 leos ioos 110 [1205

* Fails for certain datasets like photoDB. (All older people are not the
same person)

Algorithm for Correlated Clustering

L Algorithm 3 Algonthm for clusiering in the full comelation case
L A Y N wenc >0
" I: — List all elements in L in an arbitrary order.

2. — Initialize 1ink(y) = null for each element 3.

3 — Set repeat_ loop = e

4: while repeat_loopis true do

5 —Lets=|L.
& —Initially, the entice I forms a single interval.
Interval 1 Interval 2 7. while |L| > 5/2 do {/*The soral number of elemenss in L is
nor halved®! }
8 il each interval has exactly one element then
Colw - 1 o] - P
i S B S n 11: #* Divide each interval in half to form two smaller in-
tervals®/
12: for cach interval B with two or more clements do
13: — Find the median of the elements in B,
[Partition over median 14: — Partition the elements in B in two halves compar-
ll ing with the median by value questions.
_____________________ 15: — Each of these two halves forms a new interval, say
: : By and Bg.
i i 16 for bath B,. i £ {1,2] do
! | I7: — Check if B, has at keast two types: The first el-
| Bl | ement g in B, is compared with cach of the other
: : elements z in B, to check if there is a z such that
I I | | | tyvpe(y) # type(z).
! | ¥ | Zp | £y | . | . | . | | G L A L L 18: —If B, has at least two types, B, is called an ac-
1 I rive iwerval. Do nothing.
! | 1% - If B, is not active (all clkements have the
i | same bype). choose an arbitrary element y from
[- = | B.. Faor the other elements z in the interval, set
| ! (typely) = type(z) : | link{z) = y. Delete all clements in B, from L
i ! except y.
| 0 end for
21: end for
[7% endif
| 23 end while
24: end while

25 return all elements y with their link 1inkiy).

"L=L—B;
(except link(z) =y)

Number of questions asked

* Finding the median and partition for jth interval : O (nj) value questions

*Comparing first element of interval with other elements using type questions: O (nj)
b
z 0(n;) = 0(s)
i=1

* Inner while loop to find active intervals : O (log])

* Quter while loop for list size n: Q(n) = Q(g) + 0 (n log))
=0 (n log))

Handling erroneous answers

* Answer is correct with probability %+e

» Each type or value question to be performed O (= (log3))

* Hence complexity is O (n logJ) * 0(10g%)

Max/Top-k each cluster

* Can be achieved by combining previous results

SELECT most-recent(photo)

* Small modification to clustering algorithm FROM photoDB

* Ask type question to compare elements WHERE singlePerson(photo)
GROUP BY Person(photo)
* Additionally ask value question

* Just retain the element with larger value

Conclusion

* Discussed max/top-k and clustering problems

* Proposed efficient algorithms to reduce number of type
and value questions and reduce cost

* Proposed the variable error model which asks fewer
guestions than the constant error model

* Studied that fewer questions are needed when there is a
correlation between type and value

Future work

* Interesting to have a ‘value-based’ variable error model

* Reducing probability of errors when a pre-defined budget
on number of comparisons is given

* Minimize number of rounds of interaction with crowd

Thank you!

