CrowdER: Crowdsourcing Entity Resolution

A HYBRID HUMAN-MACHINE SYSTEM FOR ENTITY RESOLUTION

Entity Resolution

 The task of finding different records that refer to the same entity

ID	Product Name
r1	iPad Two 16GB WiFi White
r2	iPad 2 nd generation 16GB WiFi White

Machine-based techniques

Similarity-based

- Idea: records look similar are more likely to refer to the same entity.
- The similarity function takes a pair of records as input, and outputs a likelihood.

$$J(r_1, r_2) = \frac{|\{\text{iPad}, \text{16GB}, \text{WiFi}, \text{White}\}|}{|\{\text{iPad}, \text{16GB}, \text{WiFi}, \text{White}, \text{Two}, \text{2nd}, \text{generation}\}|} = 0.57$$

ID	Product Name
r1	iPad Two 16GB WiFi White
r2	iPad 2 nd generation 16GB WiFi White

Machine-based techniques

- Learning-based
 - Transfer the entity resolution problem into classification problem.

Human based techniques

CrowdDB

SELECT p.id, q.id FROM product p, product q WHERE p.product_name ~= q.product_name;

For n records

 $O(n^2)$

HIT Generation

- Pair-based (Naïve Batching)
- $O(n^2/k)$

Decide Whether Two Products Are the Same (Show Instructions)

Product Pair #1

Product Name	Price
iPad Two 16GB WiFi White	\$490
iPad 2nd generation 16GB WiFi White	\$469

Your Choice (Required)

- They are the same product
- They are different products

Reasons for Your Choice (Optional)

Product Pair #2

Product Name	
iPad 2nd generation 16GB WiFi White	\$469
iPhone 4th generation White 16GB	\$545

Your Choice (Required)

- They are the same product
- They are different products

Reasons for Your Choice (Optional)

Submit (1 left)

HIT Generation

- Cluster-based(Smart Batching)
- $O(n^2/k^2)$
 - n = 10000
 - k = 20
 - HITs: 250000
 - Cost: \$2500

Find Duplicate Products In the Table. (Show Instructions)

Tips: you can (1) SORT the table by clicking headers;

(2) MOVE a row by dragging and dropping it

Label	Product Name	Price -		
1 🔻	iPad 2nd generation 16GB WiFi White	\$469		
1 💌	iPad Two 16GB WiFi White	\$490		
2 🔻	Apple iPhone 4 16GB White	\$520		
•	iPhone 4th generation White 16GB	\$545		
1 Reasons for Your Answers (Optional)				
3				
4				

Submit (1 left)

Hybrid human-machine: CrowdER

Machine-based

Hybrid Human and Machine

Human-based

CrowdER

Core idea

A large amount of records in database look very dissimilar.

CrowdER

HIT Generation

- Cluster-based HIT Generation
- Approximation Algorithm

Two-Tiered Approach

- Overview
- LCC Partitioning (Top Tier)
- SCC Packing (Bottom Tier)

Cluster-based HIT Generation

Requirements

- Threshold k of numbers of records in one HIT.
- Each pair of records should be in a HIT.
- Smallest number of HITs.

NP-Hard

• Reduction from k-clique covering problem.

Traditional Approximation

- Reduce to k-clique problem.
- |SEQ| = number of edges and vertices.
- $\cdot \left[\frac{|SEQ|}{k-1} \right]$

Traditional Approximation

Performance

$$\bullet \left\lceil \frac{|SEQ|}{k-1} \right\rceil = 7$$

• Optimal number is 3. (r₁, r₂, r₃, r₇), (r₃, r₄, r₅, r₆), (r₄, r₇, r₈, r₉)

Not good enough!

CrowdER

- HIT Generation
 - Cluster-based HIT Generation
 - Approximation Algorithm

Two-Tiered Approach

- Overview
- LCC Partitioning (Top Tier)
- SCC Packing (Bottom Tier)

Two-Tiered Approach Overview

k = 4

Tier1: Decompose LCCs

Tier2: Packing SCCs

- Greedy Algorithm
 - Keep adding the most relevant vertex

Initial SCC = {r4}

- Greedy Algorithm
 - Keep adding the most relevant vertex

SCC = {r4, r6}

- Greedy Algorithm
 - Keep adding the most relevant vertex

- Greedy Algorithm
 - Keep adding the most relevant vertex

- Greedy Algorithm
 - Keep adding the most relevant vertex

- Greedy Algorithm
 - Keep adding the most relevant vertex

SCC Packing (Bottom Tier)

- How to pack them into the minimum number of HITs
 - NP-Hard (cutting-stock problem and knapsack problem)

Solution

- Transmit to integer linear program
- · Solve it by using column generation and branch-and-bound

Experimental Results

Databases

• Restaurants: 858 records, 367653 pairs.

• Products: 1081 records, 1180253 pairs.

Cluster-based HIT Generation

Entity-Resolution Techniques Experience

Pair-based vs. Cluster-based Experience

Pair-based vs. Cluster-based Experience

Conclusion

- Discussed the problem of the existing approaches
- Proposed a hybrid human-machine workflow
- Devised a heuristic two-tiered approach