SparkK™ saL

Spark SQL

Foundation

k@l BUSINESS
\Yelo/[Gl [N SIDER
The 8 fastest-growing tech skills worth over

$110,000

No. 1: Spark, up 120%, worth $113,214

DO you know how to write code In
Spark ¢

SQL

= E

Can you write SQL ¢

“SQL is a highly sought-after technical skill due to its ability to work with
nearly all databases.”

lboro Palic, CEO of Resumes Templates

History and Evolution of Big Dato
Technologies

APACHE & Procedural
4 B = Programing
S NERREELES Sp QI' K interface

& ' Declarative |
-\ U Queries Automatic
=HIVE

Optimization

So Far...

»\Ne have established that we need
polatform with Automatic Optimization

ETL from different

SOUICes

e Advanced
Analyfics

Introducing

Spark SQL : Relational Data Processing
INn Spark

Background

» Apache Spark is a general-purpose cluster computing engine with
APls in Scala, Java and Python and libraries for streaming, graph
processing and machine learning

=» RDDs are fault-tolerant, in that the system can recover lost data
using the lineage graph of the RDDs (by rerunning operations such
as the filter above to rebulld missing partitions). They can also
explicitly be cached in memory or on disk to support iteration

» Shark, a modified the Apache Hive system to run on Spark and
implemented traditional RDBMS optimizations, such as columnar
processing, over the Spark engine.

Goals for Spark SQL

» Support Relational Processing both within Spark
programs and on external data sources

» Provide High Performance using established DBMS
technigues.

» Fqasily support New Data Sources

» Enable Extension with advanced analytics algorithms
such as graph processing and machine learning.

Programming Interface

JDBC | | Console v S
¥ ¥ v
Spark SQL DataFrame API
Catalyst Optimizer
v ¥
Spark

Resilient Distributed Datasets

DataFrame API

» DataFrame is a distributed collection of rows with @
homogeneous schema

ctXx = new HiveContext ()

users = ctx.table("users")

young = users.where(users("age") < 21)
println(young.count())

Keep Track of

Hashtags ## # A Lazy Computation

Data Model and DataFrame
Operations

» Spark SQL uses a nested data model based on Hive

» |t supports all major SQL data types, including boolean, integer, double,
decimal, string, date, fimestamp and also User Defined Data types

Example of DataFrame Operations

employees
.Join(dept, employees("deptId"”) === dept("1d"))
.Wwhere(employees("gender") === "female')

.groupBy (dept ("1d"), dept("name"))
.agg (count ("name"))

DataFrame Operations Cont.

users.where(users("age") < 21)
.registerTempTable ("young")
ctx.sql ("SELECT count(*), avg(Cage) FROM young'")

#Access DF with DSL or SQL

Real World Problems

#Heterogeneous
Data Sources

Schema Inference

» Spark SQL can automatically infer the schema of these
objects using reflection

» Scala/Java - exiracted from the language’s type system

» Python - Sampling the Dataset

In — Memory Caching

#Iinvoked with .cache()

User-Defined Functions

val model: LogisticRegressionModel = ...

ctx.udf.register("predict”,
(x: Float, y: Float) => model.predict(Vector(x, y)))

ctx.sql ("SELECT predict(age, weight) FROM users")

How Spark SQLs User defined
functions are different than traditional
Database Systems ?

Catalyst Optimizer

» Catalyst is based on functional programming constructs in Scala

Purposes

Ability fo add new
optimization techniques
and features to Ability to extend the

Spark SQL optimizer

Catalyst Optimization

[Ak |
/\

H#Trees Atribute() | [Add |

N

| Literal(1) | [Literal(2) |

tree.transforn {
case Add(Literal(cl), Literal(c2)) =» Literal(cl+c2)

}

#Rules

Catalyst Optimization Cont.

» Rule Based Optimization

» Cost Based Optimization

Query Planning in Spark SQL

SQL Query

DataFrame

. Logical Physical Code
Analysis Optimization ~ Planning Generation
[
T
o lr' Selected

nresolved Logical Plan Optimized Physical - Physical RDDs
Logical Plan‘ Logical Plan || Plans 17 lan

0

0

Catalog

Figure 3: Phases of query planning in Spark SQL. Rounded rectangles represent Catalyst trees.

Extension Points

‘

#Open Source Projects

Extension Points Cont.

» Data Sources

Examples :
» CSV
- Avro

» Parquet
» JDBC

@

%y Parquet

&
= JDBC
fava Database Connectivity

Extension Points Cont.

» User Defined Types (UDTs)

class PointUDT extends UserDefinedType[Point] {

def dataType = StructType(Seq(// Our native structure
StructField("x", DoubleType),
StructField("y", DoubleType)

))

def serialize(p: Point) =

def deserialize(r: Row) =
Point(r.getDouble(0), r.getDouble(1l))

Row(p.x, p.y)

#Useful for Machine Learning

Advanced Analytics Features

» |1 . Schema Inference for Semi structured Data

» 2 Query Federation to External Databases

oo

Advanced Analytics Features Cont.

3.Integration with Spark’s Machine
Learning Library

model

- . L
(o)

(text, label) (text, label, (text, label,
words) words, features)

data = <DataFrame of (text, label) records:

tokenizer = Tokenizer ()
.setInputCol ("text").setOutputCol ("words")
tf = HashingTF ()
.setInputCol ("words") .setOutputCol ("features"™)
lr = LogisticRegression()
.setInputCol ("features")

pipeline = Pipeline().setStages([tokenizer, tf, 1lr])
model = pipeline.fit(data)

Evaluation

» SQL Performance

40 450 700 800
35 — 400 500
- 30 - 0 500 _ 600
L 25 © 300 0 0
g 20 g 220 7 g 400 2 400
= = 200 - = 300 g
e 15 € 50 - c =
€ 10 € 1p & 200 2 200
5 50 - 100
0 0 - 0 0
1a 1b 1c 2a 2b 2c Ja 3b 3c
Query 1 (Scan) Query 2 (Aggregation) Query 3 (Join) Query 4 (UDF)
B Shark * Impala ®Spark SQL B Shark © Impala ®Spark SQL B Shark Impala M Spark SQL B Shark ™ Spark SQL

Figure 8: Performance of Shark, Impala and Spark SQL on the big data benchmark queries [31].

Evaluation Cont.

» DataFrames vs. Native Spark Code

sum_and_count = \
data.map(lambda x: (x.a, (x.b, 1))) \
.reduceByKey(lambda x, y: (x[0]J+y[0], x[1]+y[1])) \
.collect ()
[(x[®], x[1]1[0] / x[1]1[1]) for x in sum_and_count]

In contrast, the same program can written as a simple manipula-
tion using the DataFrame API:

df.groupBy("a").avg("b"™)

Pipeline Performance

SQL + Spark

DataFrame

B filter
R d count
0 200 400 600 800 1000

Runtime (seconds)

Applications

» Generalized Online Aggregation
» Computational Genomics

» |istis infinite only limited by your imagination...

ALSO

TO0L
I]ISK TARGET
CONNECTOMICS ._.c’=’_, APPLIED
ORGANZATIONS SENSOR = MAY
o' RELKTONAL =] § SHARED peivmon 25 moving
ageer corivues SOGIAL PRACTITIONERS _ caprue WITHIN
INDEXING 1[""’"[3 THOUGHT
s COMPLEX cmarion INTERNET E BUSIESS £
ANALYTI ES DESCRIBING RADIO-FREQUENCY E SETS
MANAGEMENT TERABYTES =
TYPES

[VRY

CAPACTY %L‘.!#‘?E!Fﬁ‘ﬁﬂ&“[ss'“" g= PETABYTES INCLUDE -

= AHIlITY =

HUNDREDS = B = SYSTEMS TOLERABLE
=11\ STURAGE
- - PARMLLEL ™ == =
SEARCH b

"~ GROW

DIFFICULTY

Conclusion

Our Final Hash Tags
#A Platform with

#Automatic optimization

#Complex pipelines that mix relational and complex analytics
#Large-scale data analysis

#Semi-structured data

#Data types for machine learning

#Extensible optimizer called Catalyst

#Easy to add Optimization rules, data sources and data types

