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The 8 fastest-growing tech skills worth over

$110,000

No. 1: Spark, up 120%, worth $113,214




DO you know how to write code In
Spark ¢




SQL
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Can you write SQL ¢

“SQL is a highly sought-after technical skill due to its ability to work with
nearly all databases.”

lboro Palic, CEO of Resumes Templates
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Introducing

Spark SQL : Relational Data Processing
INn Spark




Background

» Apache Spark is a general-purpose cluster computing engine with
APls in Scala, Java and Python and libraries for streaming, graph
processing and machine learning

=» RDDs are fault-tolerant, in that the system can recover lost data
using the lineage graph of the RDDs (by rerunning operations such
as the filter above to rebulld missing partitions). They can also
explicitly be cached in memory or on disk to support iteration

» Shark, a modified the Apache Hive system to run on Spark and
implemented traditional RDBMS optimizations, such as columnar
processing, over the Spark engine.



Goals for Spark SQL

» Support Relational Processing both within  Spark
programs and on external data sources

» Provide High Performance using established DBMS
technigues.

» Fqasily support New Data Sources

» Enable Extension with advanced analytics algorithms
such as graph processing and machine learning.




Programming Interface

JDBC | | Console v S
¥ ¥ v
Spark SQL DataFrame API
Catalyst Optimizer
v ¥
Spark

Resilient Distributed Datasets




DataFrame API

» DataFrame is a distributed collection of rows with @
homogeneous schema

ctXx = new HiveContext ()

users = ctx.table("users")

young = users.where(users("age") < 21)
println(young.count())

Keep Track of

Hashtags ## # A Lazy Computation




Data Model and DataFrame
Operations

» Spark SQL uses a nested data model based on Hive

» |t supports all major SQL data types, including boolean, integer, double,
decimal, string, date, fimestamp and also User Defined Data types

Example of DataFrame Operations

employees
.Join(dept, employees("deptId"”) === dept("1d"))
.Wwhere(employees("gender") === "female')

.groupBy (dept ("1d"), dept("name"))
.agg (count ("name"))




DataFrame Operations Cont.

users.where(users("age") < 21)
.registerTempTable ("young")
ctx.sql ("SELECT count(*), avg(Cage) FROM young'")

#Access DF with DSL or SQL




Real World Problems

#Heterogeneous
Data Sources




Schema Inference

» Spark SQL can automatically infer the schema of these
objects using reflection

» Scala/Java - exiracted from the language’s type system

» Python - Sampling the Dataset




In — Memory Caching

#Iinvoked with .cache()




User-Defined Functions

val model: LogisticRegressionModel = ...

ctx.udf.register("predict”,
(x: Float, y: Float) => model.predict(Vector(x, y)))

ctx.sql ("SELECT predict(age, weight) FROM users")

How Spark SQLs User defined
functions are different than traditional
Database Systems ?




Catalyst Optimizer

» Catalyst is based on functional programming constructs in Scala

Purposes

Ability fo add new
optimization techniques
and features to Ability to extend the

Spark SQL optimizer




Catalyst Optimization
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Catalyst Optimization Cont.

» Rule Based Optimization

» Cost Based Optimization




Query Planning in Spark SQL
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Figure 3: Phases of query planning in Spark SQL. Rounded rectangles represent Catalyst trees.




Extension Points

‘

#Open Source Projects




Extension Points Cont.

» Data Sources

Examples :
» CSV
- Avro

» Parquet
» JDBC

@

%y Parquet

&
= JDBC
fava Database Connectivity



Extension Points Cont.

» User Defined Types (UDTs)

class PointUDT extends UserDefinedType[Point] {

def dataType = StructType(Seq( // Our native structure
StructField("x", DoubleType),
StructField("y", DoubleType)

))

def serialize(p: Point) =

def deserialize(r: Row) =
Point(r.getDouble(0), r.getDouble(1l))

Row(p.x, p.y)

#Useful for Machine Learning




Advanced Analytics Features

» |1 . Schema Inference for Semi structured Data

» 2 Query Federation to External Databases

oo




Advanced Analytics Features Cont.

3.Integration with Spark’s Machine
Learning Library

model

- . L
(o)

(text, label) (text, label, (text, label,
words) words, features)

data = <DataFrame of (text, label) records:

tokenizer = Tokenizer ()
.setInputCol ("text").setOutputCol ("words")
tf = HashingTF ()
.setInputCol ("words") .setOutputCol ("features"™)
lr = LogisticRegression()
.setInputCol ("features")

pipeline = Pipeline().setStages([tokenizer, tf, 1lr])
model = pipeline.fit(data)




Evaluation

» SQL Performance
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Figure 8: Performance of Shark, Impala and Spark SQL on the big data benchmark queries [31].




Evaluation Cont.

» DataFrames vs. Native Spark Code

sum_and_count = \
data.map(lambda x: (x.a, (x.b, 1))) \
.reduceByKey(lambda x, y: (x[0]J+y[0], x[1]+y[1])) \
.collect ()
[(x[®], x[1]1[0] / x[1]1[1]) for x in sum_and_count]

In contrast, the same program can written as a simple manipula-
tion using the DataFrame API:

df.groupBy("a").avg("b"™)




Pipeline Performance

SQL + Spark
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Applications

» Generalized Online Aggregation
» Computational Genomics

» |istis infinite only limited by your imagination...
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Conclusion

Our Final Hash Tags
#A Platform with

#Automatic optimization

#Complex pipelines that mix relational and complex analytics
#Large-scale data analysis

#Semi-structured data

#Data types for machine learning

#Extensible optimizer called Catalyst

#Easy to add Optimization rules, data sources and data types






