Get Another Label? Improving Data Quality And Data Mining Using Multiple, Noisy Labelers

Victor S. Sheng Foster Provost Panagiotis G. Ipeirotis

Stern School, New York University

Presented by : Akash Abdu Jyothi

Background

- Obtaining expert labeling is an integral part of KDD (Knowledge Discovery in Databases) preprocessing
- Is it possible to obtain good data values ("labels") relatively cheaply from multiple noisy sources ("labelers")?
- Used as training labels for supervised modeling

Repeated Labeling...?

- Labels are imperfect
 - Raghu Ramakrishnan from his SIGKDD Innovation Award Lecture (2008)

"the best you can expect are noisy labels"

- Modeling tasks often require high quality labeling
- Outsourcing labeling tasks
 - Quality may be lower than expert labeling
 - But low costs can allow massive scale

Effect of Low Quality Labels

Learning curves under different quality levels(q) of training data for classification problem

Outline

Data quality with repeated labeling

- Model quality with repeated labeling
- Summary and future work

Part 1 – Quality of Repeated Labeling

- Problem supervised induction of a binary classification model
- Training example (x_i,y_i)
 - C_U cost of procuring unlabeled "feature" portion
 - C_L cost of labeling x_i with a label y_i

Assumptions

- C_U and C_L are constant for all examples
- Labeler quality is constant regardless of the example
 - p_i is the probability that jth labeler gets a label correct

Majority voting – Uniform labeler Quality

- Using 2N+1 labelers of uniform quality i.e. $p_i = p_i$
- Integrated labeling quality q is the sum of probabilities where we have more correct than wrong answers

$$q = \sum_{i=0}^{N} \binom{2N+1}{i} \cdot p^{2N+1-i} \cdot (1-p)^{i}$$

Majority voting – Uniform labeler Quality

The relationship between integrated labeling quality, individual quality, and the number of labelers

Majority voting – Different labeler Quality

 Special case of a group of three labelers with labeling qualities p-d, p and p+d

Repeated-labeling gives better quality than the best labeler (p+d) when d is below the curve

Uncertainty Preserving Labeling

- Majority voting information about label uncertainty is lost!
- Solution...?
 - 1. Soft labels
 - Probabilistic label for each example
 - Difficult in practice not all modeling techniques and software packages accommodate this
 - 2. Multiplied Examples (ME)
 - Create one replica of x_i with each unique label that is assigned
 - Assign weight (1/n) to each label based on the number of times it appears (n)
 - Can be incorporated into learning algorithms easily!

Part 2 - Repeated Labeling and Modeling

 How to improve classification by modifying dataset with noisy labels?

Part 2 - Repeated Labeling and Modeling

12 datasets selected for binary classification problem

Data Set	#Attributes	#Examples	\mathbf{Pos}	\mathbf{Neg}
bmg	41	2417	547	1840
expedia	41	3125	417	2708
kr-vs-kp	37	3196	1669	1527
$\operatorname{mushroom}$	22	8124	4208	3916
qvc	41	2152	386	1766
sick	30	3772	231	3541
$\operatorname{spambase}$	58	4601	1813	2788
\mathbf{splice}	61	3190	1535	1655
$\operatorname{thyroid}$	30	3772	291	3481
tic-tac-toe	10	958	332	626
$\operatorname{travelocity}$	42	8598	1842	6756
waveform	41	5000	1692	3308

- J48 (decision tree) in WEKA used for the experiments
- 30% of examples held out in each case as test data

Round-robin Strategy, C_U<< C_L

- Majority Voting (MV) acquires additional labels for the initial set of examples
- Single Labeling (SL) acquires new examples and their labels

Define data acquisition cost

 $C_{D} = C_{U} * T_{r+}C_{L} * N_{L}$

 T_r - Number of new unlabeled samples collected N_L - Number of samples to be labeled

• $N_L = T_r$ for single labeling, $N_L > T_r$ for repeated labeling

• New repeated labeling strategy – for every new example acquired repeated labeling acquires a fixed number of labels k, i.e. $N_L = k * T_r$

• Cost ratio ρ is defined as C_U/CL

Increase in model accuracy vs data acquisition cost ($\rho = 3, k = 5$)

Average improvement per unit cost of repeated-labeling with majority voting over single labeling

Uncertainty-preserving repeated labeling performs at least as well as majority vote

The learning curves of MV and ME with p = 0.6, $\rho = 3$, k = 5, using the splice dataset

Selective Repeated Labeling

Do not use

- Second entropy measure to choose examples for further labeling
 - A small set of examples are chosen many times
 - More pure but incorrect examples are never visited
- Entropy is scale invariant
 - (3+, 2-) has the same entropy as (600+, 400-)
- Fundamental problem : Entropy is not for uncertainty, but for mixture

Selective Repeated Labeling

 Generalized round-robin repeated labeling outperforms entropy based selective repeated labeling

Estimating Label Uncertainty (LU)

- We compute a Bayesian estimate of the uncertainty in the class of the example
- Prior distribution over the true label is assumed to be uniform in the interval [0, 1]
- Posterior probability thus follows a Beta distribution $B(L_{pos} + 1, L_{neg} + 1)$
- Tail probability below a labeling decision threshold (0.5) is chosen as the measure of uncertainty

Estimating Model Uncertainty (MU)

- We apply traditional active learning score ignoring the current multiset of labels
- Learn a set (m) of models each of which predicts the probability of a class membership, yielding the uncertainty score:

$$S_{MU} = 0.5 - \left| \frac{1}{m} \sum_{i=1}^{m} \Pr(+|x, H_i) - 0.5 \right|$$

- Pr(+|x, H) is the probability of classifying he example x into + by the learned model H
- In our experiments, m = 10 and model is set to random forest (WEKA)

Combining Label and Model Uncertainties (LMU)

 Finally we combine label and model uncertainty scores to get the best of both worlds

$$S_{LMU} = \sqrt{S_{LU} \times S_{MU}}$$

Experiment Results

- In high noise setting (p = 0.6), MU performs well – learned models can help to choose good examples to relabel!
- LMU dominates throughout

Experiment Results

Average accuracies for noisy setting, p = 0.6

Data Set	\mathbf{GRR}	\mathbf{MU}	\mathbf{LU}	\mathbf{LMU}
bmg	62.97	71.90	64.82	68.93
expedia	80.61	84.72	81.72	85.01
kr-vs-kp	76.75	76.71	81.25	82.55
mushroom	89.07	94.17	92.56	95.52
\mathbf{qvc}	64.67	76.12	66.88	74.54
sick	88.50	93.72	91.06	93.75
$\mathbf{spambase}$	72.79	79.52	77.04	80.69
splice	69.76	68.16	73.23	73.06
thyroid	89.54	93.59	92.12	93.97
tic-tac-toe	59.59	62.87	61.96	62.91
travelocity	64.29	73.94	67.18	72.31
waveform	65.34	69.88	66.36	70.24
average	73.65	78.77	76.35	79.46

Summary of Results

- Repeated labeling can improve data quality and model quality (but not always)
- Repeated labeling can be preferable to single labeling when labels aren't particularly cheap
- When labels are relatively cheap, repeated labeling can do much better
- Round-robin repeated labeling does well
- Selective repeated labeling performs better

Future Work

- Estimating labelers' quality by observing assigned labels could allow for more sophisticated selective repeatedlabelling strategies.
- Study of labeling quality variation with labeler payment.
- Here we introduced noise to the labels. Using real labelers should give a better understanding of the effects of repeated labeling.
- We compared repeated labeling vs fixed labeling, a hybrid process of combining both based on the expected benefit of either methods could provide better data quality.

RAISE YOUR HAND TO

ASK A QUESTION