CLAMShell: Speeding up Crowds for Low-latency Data Labeling

Daniel Haas, Jiannan Wang, Eugene Wu, Michael J. Franklin

Crowd Latency in Data Labeling

- Necessary to use crowdsourcing method for data labeling
- Desire: low cost, high speed, high quality
- Trade-off between cost and latency for crowd-sourced labeling tasks.

CLAMShell System

- speeds up crowds in order to achieve consistent, low-latency data labeling
- a collection of practical techniques
- reduces latency in all stages of labeling tasks

Contribution

- An empirical study of the dominant sources of latency
- CLAMShell: systematically provide solutions for each major sources of latencies
- Evaluation of CLAMShell on live workers

Study Crowd Latency - Sources

- Categorizing the factors based on the granularity of work
- 1. Per-Task Latency
- 2. Per-Batch Latency
- 3. Full-Run Latency

- 1. Per-Task Latency
 - Recruitment: recruiting the crowd workers
 - Qualification and Training: tutorials or qualification tasks
 - Work: workers' status may be very different
- 2. Per-Batch Latency
- 3. Full-Run Latency

- 1. Per-Task Latency
- 2. Per-Batch Latency

Batch: labeling tasks in fixed-sized set

Latency distribution and long tails

- Stragglers: the batch must block until the slowest task is completed
- Mean Pool Latency (MPL)
- Pool and Worker Variance: high variance within and between batches
- 3. Full-Run Latency

- 1. Per-Task Latency
- 2. Per-Batch Latency
- 3. Full-Run Latency
 - Decision Latency: pick next batches
 - Task Count: machine learning
 - Batch Size
 - Pool Size

Task Latency	Batch Latency	Full-Run Latency
Recruitment	Stragglers	Decision Time
Qual & Training	Mean pool latency	Task Count
Work	Pool variance	Batch Size
		Pool Size

Existing Solutions and Researches

- frequently repost tasks: high recruitment time
- algorithmically increase prices over time to attract more workers
- retainer model: pre-recruits a pool of crowd workers
- re-designing task interfaces: task specific
- using algorithmic analysis and machine learning to reduce task count
 - Active learning: using data from completed tasks until the prediction quality exceeds a user-defined threshold
 - Batch size limitation

Reducing Latency - Our Thought

- Our Solution: CLAMShell
- reducing latency by sacrificing cost
- comprehensive solution
- general purpose labeling system

CLAMShell System

- 1. Task Latency
 - ► Retainer pools
 - ▶ Includes workers training and qualification in recruitment
- 2. Batch Latency
 - ► Straggler mitigation
 - Pool maintenance
- 3. Full-Run Latency
 - ► Hybrid strategy: active learning + passive learning

CLAMShell System - Architecture

- User submits labeling tasks to Batcher
- ► Task Selector picks incomplete tasks and sends to LifeGuard
- LifeGuard schedules tasks in batches and sends to Crowd Platform

CLAMShell System - Architecture

- Crowd Platform
 - ► Slots: retainer tasks
 - empty, new task or duplicated task
 - Completed labels are sent back to Batcher
- Machine learning model: hybrid sampler
- User can access the completed labels and query for new predictions

CLAMShell System - Optimization

Task Latency	Batch Latency	Full-Run Latency
Recruitment	Stragglers	Decision Time
Qual & Training	Mean pool latency	Task Count
Work	Pool variance	Batch Size
		Pool Size

- 1. Task Latency
 - Retainer pools
 - Includes workers training and qualification in recruitment
- 2. Batch Latency

- Straggler mitigation
- Pool maintenance
- 3. Full-Run Latency
 - Hybrid strategy: active learning + passive learning

Batch Latency Optimization

- variability of worker latencies within the pool
- variability within the tasks that a single worker performs
- reduce both the mean of the latency distribution and its variance
- Straggler Mitigation and Pool Maintenance

Straggler Mitigation: Reducing Variance

- replication-based approach
 - worker: active / available
 - task: active / complete / unassigned
- Default: route unassigned tasks to available workers
 - ▶ Batch is finished until the slowest task completed
- Straggler mitigation: available workers received duplication of active tasks immediately
 - User gets the first completed copy and other copies get terminated
 - ► Hide latency by sending task to other workers

Straggler Mitigation - Simulation

- Q1: Which task should be assigned to an available worker?
 - longest-running active task, random task, task with fewest active workers or task known by an oracle to complete the slowest
- Simulation result: the selection result doesn't affect end-to-end latency.
 - random performed as fast as the oracle solution
 - ► fast workers complete almost all of the tasks

Straggler Mitigation - Simulation

- Q2: What is the most effective batch size for Straggler Mitigation?
 - ▶ Let pool size to batch size ratio $R = \frac{N_{pool}}{N_{batch}}$
- Simulation result
 - ▶ Using random selection algorithm and different pool size and R ratio
 - ► Each batch gains more benefit from Straggler Mitigation when R is higher

Pool Maintenance: Better Mean Latency

- ► The workers in labeling pool are slow on average
- Strategy: continuously replaces slow workers in order to converge to a pool of mostly fast workers.
- ▶ Latency threshold PM_{ℓ}
- Calculate mean latency for each worker based on finished task
- ► Reserve new workers in background for replacement

Pool Maintenance - Speed Convergence

- \blacktriangleright Mean latencies for a global set of workers: μ_i
 - \blacktriangleright $\mu_f < PM_\ell$ mean latency among fast workers with probability 1-q
 - \blacktriangleright $\mu_{\scriptscriptstyle S} > PM_{\ell}$ mean latency among slow workers with probability q
- Mean latency:
 - ▶ Initial: $\mathbb{E}[\mu_i] = (1 q)\mu_f + q\mu_S$
 - ► After first step: $\mathbb{E}[\mu_i] = (1 q)\mu_f + (q(1 q)\mu_f + q^2\mu_s)$
 - After nth step:

$$\mathbb{E}[\mu_i] = (\sum_{i=0}^n q^i)(1-q)\mu_f + q^{n+1}\mu_s$$
$$= (1-q^{n+1})\mu_f + q^{n+1}\mu_s.$$

$$\lim_{n\to\infty} \mathbb{E}[\mu_i] = \mu_f$$

Pool Maintenance

- Simulation: replace slow workers after each batch
 - ▶ batch latency falls quickly, nearly halving in just 15 to 20 batches
 - converges quickly to the model's predicted asymptote
- Threshold Selection: k standard deviations below the mean
 - low enough to decrease average pool latency by releasing slow workers
 - high enough to avoid discarding the fastest workers from the pool
- Pool Maintenance can be use in other critiria
 - quality
 - weighted average of quality and speed

Batch Latency - Combination

- Naïve approach
 - ► Simply combine Straggler Mitigation and Pool Maintenance together
 - ▶ Result: zero or negative gains compare to Straggler Mitigation alone
 - Straggler Mitigation terminate slow tasks, skewing the latency of each worker

Batch Latency - Combination

TermEst

estimate the average latencies of terminated tasks based on the number of times a worker's task is terminated and the fast workers latency

$$l_{s,T_t} = \frac{l_f(N+\alpha)}{N_c + \alpha}$$

using estimated latencies on terminated tasks to calculate the latencies for slow workers

$$l_s = \frac{N_t}{N} \times l_{s,T_t} + \frac{N_c}{N} \times l_{s,T_c}$$

Batch Latency - Quality Control

- What if fast workers are spammers or inaccurate workers?
- In empirical data, fast workers are no more likely to be inaccurate than slow workers
- Traditional quality control techniques are entirely complementary to our techniques
 - redundancy-based quality control algorithms
 - ▶ P. G. Ipeirotis, F. Provost, and J. Wang. Quality management on Amazon Mechanical Turk. SIGKDD, 2010.
 - ▶ M. I. Jordan and T. M. Mitchell. Machine learning: Trends, perspectives, and prospects. Science, 2015.

CLAMShell System - Optimization

Task Latency	Batch Latency	Full-Run Latency
Recruitment	Stragglers	Decision Time
Qual & Training	Mean pool latency	Task Count
Work	Pool variance	Batch Size
		Pool Size

- 1. Task Latency
 - ► Retainer pools
 - Includes workers training and qualification in recruitment
- 2. Batch Latency
 - Straggler mitigation
 - ▶ Pool maintenance
- 3. Full-Run Latency

Hybrid strategy: active learning + passive learning

Full-Run Latency Optimization

- ► Learning Algorithm decreases task count, but is restricted by decision latency and batch size
- CLAMShell uses uncertainty sampling to reduce the task count even further
 - ► Increasing decision latency
 - Decreasing batch size
- Hybrid learning: combines active and passive learning
 - maximize pool parallelism
 - ▶ hide batch size limitation

Hybrid learning

- Challenge of active learning
 - ► A good batch size for learning algorithm to converge
 - ▶ It is hard to train a good model on some labeling task
- Hybrid learning
 - simultaneously acquires labels using the active selection strategy and random sampling
 - ▶ Point Selection: each worker in the pool has at least one point to label
 - Model Retraining: retrains a model on all previously observed labels, both active and passive learning samples
 - Future work: weight on both types of points can be adjust by user

Hybrid learning - Batch Size

- Small: will take long time to label all points
- ► Large: slow on training, hard to converge
- According to our experiment, 10 to 40 is the a reasonable range for batch size
- ▶ With in that range, there was no significant correlation between batch size and convergence rates on any single dataset

Hybrid learning - Decision Latency

- How to reduce the time to retrain a model?
- ► First, CLAMShell consider only a uniform random sample of the points for selection in next batch
 - ► Instead of considering all unlabeled points
- Second, CLAMShell continually retrains models asynchronously on the latest available points
 - ▶ There always a new trained module and a new batch available

CLAMShell System - Optimization

${f CLAMShell}$	Latency		\mathbf{Cost}	General
Techniques	Mean	Variance	Cost	General
straggler	Yes	Yes	Increase	Yes
pool	Yes	Yes	No Change	Yes
hybrid	Yes	No	Increase	AL

Table 2: CLAMShell techniques (AL: Active Learning).

Evaluation

- Simulator:
 - retainer-pool crowd workers
 - uncertainty sampling on top of scikit-learn's model training
- Live Experiments:
 - deploy data labeling task on MTurk
 - run at multiple times of day
 - ▶ nearly 250,000 individual task assignments over several weeks

Evaluation - Dataset

Name	# Instances	Multi-class	Features
MNIST	70,000	Yes	784
CIFAR-10	60,000	2	3072

- ► Public Dataset
- ► Machine generated data:
 - scikit-learn data generator

Evaluation - Per-batch Tecniques

Evaluation - Hybrid Learning

Evaluation - Over All

Conclusion

- CLAMShell: Crowdsourcing data labeling system at interactive speeds
 - ► Straggler mitigation, Pool maintenance and Hybrid learning
- Future work
 - richer objective functions
 - better way to train hybrid learning model
 - integrating CLAMShell with data cleaning system