CLAMShell: Speeding up Crowds for Low-latency Data Labeling

Daniel Haas, Jiannan Wang, Eugene Wu, Michael J. Franklin
Crowd Latency in Data Labeling

- Necessary to use crowdsourcing method for data labeling
- Desire: low cost, high speed, high quality
- Trade-off between cost and latency for crowd-sourced labeling tasks.
CLAMShell System

- speeds up crowds in order to achieve consistent, low-latency data labeling
- a collection of practical techniques
- reduces latency in all stages of labeling tasks
Contribution

- An empirical study of the dominant sources of latency
- CLAMShell: systematically provide solutions for each major sources of latencies
- Evaluation of CLAMShell on live workers
Study Crowd Latency - Sources

- Categorizing the factors based on the granularity of work

1. Per-Task Latency
2. Per-Batch Latency
3. Full-Run Latency
Sources of Latency

1. Per-Task Latency
 - Recruitment: recruiting the crowd workers
 - Qualification and Training: tutorials or qualification tasks
 - Work: workers’ status may be very different

2. Per-Batch Latency

3. Full-Run Latency
Sources of Latency

1. Per-Task Latency
2. Per-Batch Latency
 Batch: labeling tasks in fixed-sized set
 Latency distribution and long tails
 - Stragglers: the batch must block until the slowest task is completed
 - Mean Pool Latency (MPL)
 - Pool and Worker Variance: high variance within and between batches
3. Full-Run Latency
Sources of Latency

1. Per-Task Latency
2. Per-Batch Latency
3. Full-Run Latency
 - Decision Latency: pick next batches
 - Task Count: machine learning
 - Batch Size
 - Pool Size
Sources of Latency

<table>
<thead>
<tr>
<th>Task Latency</th>
<th>Batch Latency</th>
<th>Full-Run Latency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recruitment</td>
<td>Stragglers</td>
<td>Decision Time</td>
</tr>
<tr>
<td>Qual & Training</td>
<td>Mean pool latency</td>
<td>Task Count</td>
</tr>
<tr>
<td>Work</td>
<td>Pool variance</td>
<td>Batch Size</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pool Size</td>
</tr>
</tbody>
</table>
Existing Solutions and Researches

- frequently repost tasks: high recruitment time
- algorithmically increase prices over time to attract more workers
- retainer model: pre-recruits a pool of crowd workers
- re-designing task interfaces: task specific
- using algorithmic analysis and machine learning to reduce task count
 - Active learning: using data from completed tasks until the prediction quality exceeds a user-defined threshold
 - Batch size limitation
Reducing Latency - Our Thought

- Our Solution: CLAMShell
- reducing latency by sacrificing cost
- comprehensive solution
- general purpose labeling system
CLAMShell System

1. Task Latency
 - Retainer pools
 - Includes workers training and qualification in recruitment

2. Batch Latency
 - Straggler mitigation
 - Pool maintenance

3. Full-Run Latency
 - Hybrid strategy: active learning + passive learning
The CLAMShell System

Retainer Pool Slots

T_0'

T_0

T_1

S_4

Crowd Platform

Mitigation task

New task

Churn

Labels

Pool Manager

Scheduler

Mitigator

Maintainer

Task batch

Task Selector

Uniform

Hybrid

Active

Model Trainer

User

Labeling tasks

Labels & predictions

LifeGuard

Batcher
CLAMShell System - Architecture

- User submits labeling tasks to Batcher
- Task Selector picks incomplete tasks and sends to LifeGuard
- LifeGuard schedules tasks in batches and sends to Crowd Platform
CLAMShell System - Architecture

- **Crowd Platform**
 - Slots: retainer tasks
 - empty, new task or duplicated task
 - Completed labels are sent back to Batcher

- Machine learning model: hybrid sampler

- User can access the completed labels and query for new predictions
CLAMShell System - Optimization

<table>
<thead>
<tr>
<th>Task Latency</th>
<th>Batch Latency</th>
<th>Full-Run Latency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recruitment</td>
<td>Stragglers</td>
<td>Decision Time</td>
</tr>
<tr>
<td>Qual & Training</td>
<td>Mean pool latency</td>
<td>Task Count</td>
</tr>
<tr>
<td>Work</td>
<td>Pool variance</td>
<td>Batch Size</td>
</tr>
</tbody>
</table>

Task Latency
- Retainer pools
- Includes workers training and qualification in recruitment

Batch Latency
- Straggler mitigation
- Pool maintenance

Full-Run Latency
- Hybrid strategy: active learning + passive learning
Batch Latency Optimization

- variability of worker latencies within the pool
- variability within the tasks that a single worker performs
- reduce both the mean of the latency distribution and its variance
- Straggler Mitigation and Pool Maintenance
Straggler Mitigation: Reducing Variance

- replication-based approach
 - worker: active / available
 - task: active / complete / unassigned
- Default: route unassigned tasks to available workers
 - Batch is finished until the slowest task completed
- Straggler mitigation: available workers received duplication of active tasks immediately
 - User gets the first completed copy and other copies get terminated
 - Hide latency by sending task to other workers
Straggler Mitigation - Simulation

- Q1: Which task should be assigned to an available worker?
 - longest-running active task, random task, task with fewest active workers or task known by an oracle to complete the slowest
- Simulation result: the selection result doesn’t affect end-to-end latency.
 - random performed as fast as the oracle solution
 - fast workers complete almost all of the tasks
Q2: What is the most effective batch size for Straggler Mitigation?

- Let pool size to batch size ratio $R = \frac{N_{\text{pool}}}{N_{\text{batch}}}$

Simulation result

- Using random selection algorithm and different pool size and R ratio
- Each batch gains more benefit from Straggler Mitigation when R is higher
Pool Maintenance: Better Mean Latency

- The workers in labeling pool are slow on average.
- Strategy: continuously replaces slow workers in order to converge to a pool of mostly fast workers.
- Latency threshold $PM_ℓ$
- Calculate mean latency for each worker based on finished task.
- Reserve new workers in background for replacement.
Pool Maintenance - Speed Convergence

- Mean latencies for a global set of workers: μ_i
 - $\mu_f < PM_e$ mean latency among fast workers with probability $1 - q$
 - $\mu_s > PM_e$ mean latency among slow workers with probability q

- Mean latency:
 - Initial: $\mathbb{E}[\mu_i] = (1 - q)\mu_f + q\mu_s$
 - After first step: $\mathbb{E}[\mu_i] = (1 - q)\mu_f + (q(1 - q)\mu_f + q^2\mu_s)$
 - After nth step:

$$
\mathbb{E}[\mu_i] = \left(\sum_{i=0}^{n} q^i \right) (1 - q)\mu_f + q^{n+1}\mu_s
= (1 - q^{n+1})\mu_f + q^{n+1}\mu_s.
\lim_{n \to \infty} \mathbb{E}[\mu_i] = \mu_f
$$
Pool Maintenance

- Simulation: replace slow workers after each batch
 - batch latency falls quickly, nearly halving in just 15 to 20 batches
 - converges quickly to the model’s predicted asymptote
- Threshold Selection: k standard deviations below the mean
 - low enough to decrease average pool latency by releasing slow workers
 - high enough to avoid discarding the fastest workers from the pool
- Pool Maintenance can be use in other criteria
 - quality
 - weighted average of quality and speed
Batch Latency - Combination

- Naïve approach
 - Simply combine Straggler Mitigation and Pool Maintenance together
 - Result: zero or negative gains compare to Straggler Mitigation alone
 - Straggler Mitigation terminate slow tasks, skewing the latency of each worker
Batch Latency - Combination

- **TermEst**
 - estimate the average latencies of terminated tasks based on the number of times a worker’s task is terminated and the fast workers latency
 \[l_{s,T_t} = \frac{l_f(N + \alpha)}{N_c + \alpha} \]
 - using estimated latencies on terminated tasks to calculate the latencies for slow workers
 \[l_s = \frac{N_t}{N} \times l_{s,T_t} + \frac{N_c}{N} \times l_{s,T_c} \]
Batch Latency - Quality Control

- What if fast workers are spammers or inaccurate workers?
- In empirical data, fast workers are no more likely to be inaccurate than slow workers
- Traditional quality control techniques are entirely complementary to our techniques
 - redundancy-based quality control algorithms
CLAMShell System - Optimization

<table>
<thead>
<tr>
<th>Task Latency</th>
<th>Batch Latency</th>
<th>Full-Run Latency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recruitment</td>
<td>Stragglers</td>
<td>Decision Time</td>
</tr>
<tr>
<td>Qual & Training</td>
<td>Mean pool latency</td>
<td>Task Count</td>
</tr>
<tr>
<td>Work</td>
<td>Pool variance</td>
<td>Batch Size</td>
</tr>
</tbody>
</table>

1. Task Latency
 - Retainer pools
 - Includes workers training and qualification in recruitment

2. Batch Latency
 - Straggler mitigation
 - Pool maintenance

3. Full-Run Latency
 - Hybrid strategy: active learning + passive learning
Full-Run Latency Optimization

- Learning Algorithm decreases task count, but is restricted by decision latency and batch size
- CLAMShell uses uncertainty sampling to reduce the task count even further
 - Increasing decision latency
 - Decreasing batch size
- Hybrid learning: combines active and passive learning
 - maximize pool parallelism
 - hide batch size limitation
Hybrid learning

- Challenge of active learning
 - A good batch size for learning algorithm to converge
 - It is hard to train a good model on some labeling task

- Hybrid learning
 - simultaneously acquires labels using the active selection strategy and random sampling
 - Point Selection: each worker in the pool has at least one point to label
 - Model Retraining: retrained a model on all previously observed labels, both active and passive learning samples
 - Future work: weight on both types of points can be adjust by user
Hybrid learning - Batch Size

- Small: will take long time to label all points
- Large: slow on training, hard to converge
- According to our experiment, 10 to 40 is the a reasonable range for batch size
- With in that range, there was no significant correlation between batch size and convergence rates on any single dataset
Hybrid learning - Decision Latency

- How to reduce the time to retrain a model?
 - First, CLAMShell consider only a uniform random sample of the points for selection in next batch
 - Instead of considering all unlabeled points
 - Second, CLAMShell continually retracts models asynchronously on the latest available points
 - There always a new trained module and a new batch available
CLAMShell System - Optimization

<table>
<thead>
<tr>
<th>CLAMShell Techniques</th>
<th>Latency Mean</th>
<th>Latency Variance</th>
<th>Cost</th>
<th>General</th>
</tr>
</thead>
<tbody>
<tr>
<td>straggler</td>
<td>Yes</td>
<td>Yes</td>
<td>Increase</td>
<td>Yes</td>
</tr>
<tr>
<td>pool</td>
<td>Yes</td>
<td>Yes</td>
<td>No Change</td>
<td>Yes</td>
</tr>
<tr>
<td>hybrid</td>
<td>Yes</td>
<td>No</td>
<td>Increase</td>
<td>AL</td>
</tr>
</tbody>
</table>

Table 2: CLAMShell techniques (AL: Active Learning).
Evaluation

- Simulator:
 - retainer-pool crowd workers
 - uncertainty sampling on top of scikit-learn’s model training

- Live Experiments:
 - deploy data labeling task on MTurk
 - run at multiple times of day
 - nearly 250,000 individual task assignments over several weeks
Evaluation - Dataset

<table>
<thead>
<tr>
<th>Name</th>
<th># Instances</th>
<th>Multi-class</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNIST</td>
<td>70,000</td>
<td>Yes</td>
<td>784</td>
</tr>
<tr>
<td>CIFAR-10</td>
<td>60,000</td>
<td>2</td>
<td>3072</td>
</tr>
</tbody>
</table>

- Public Dataset
- Machine generated data:
 - scikit-learn data generator
Evaluation - Per-batch Techniques
Evaluation - Hybrid Learning

![Graph showing model accuracy over time for different settings and time intervals. The graph compares active, hybrid, and passive learning scenarios.](image)
Evaluation - Over All
Conclusion

- CLAMShell: Crowdsourcing data labeling system at interactive speeds
 - Straggler mitigation, Pool maintenance and Hybrid learning
- Future work
 - richer objective functions
 - better way to train hybrid learning model
 - integrating CLAMShell with data cleaning system