
CLAMShell: Speeding up

Crowds for Low-latency

Data Labeling
Daniel Haas, Jiannan Wang, Eugene Wu, Michael J. Franklin

Crowd Latency in Data Labeling

 Necessary to use crowdsourcing method for data labeling

 Desire: low cost, high speed, high quality

 Trade-off between cost and latency for crowd-sourced labeling tasks.

CLAMShell System

 speeds up crowds in order to achieve consistent, low-latency data labeling

 a collection of practical techniques

 reduces latency in all stages of labeling tasks

Contribution

 An empirical study of the dominant sources of latency

 CLAMShell: systematically provide solutions for each major sources of

latencies

 Evaluation of CLAMShell on live workers

Study Crowd Latency - Sources

 Categorizing the factors based on the granularity of work

1. Per-Task Latency

2. Per-Batch Latency

3. Full-Run Latency

Sources of Latency

1. Per-Task Latency

• Recruitment: recruiting the crowd workers

• Qualification and Training: tutorials or qualification tasks

• Work: workers’ status may be very different

2. Per-Batch Latency

3. Full-Run Latency

Sources of Latency

1. Per-Task Latency

2. Per-Batch Latency

Batch: labeling tasks in fixed-sized set

Latency distribution and long tails

 Stragglers: the batch must block until the slowest task is completed

 Mean Pool Latency (MPL)

 Pool and Worker Variance: high variance within and between batches

3. Full-Run Latency

Sources of Latency

1. Per-Task Latency

2. Per-Batch Latency

3. Full-Run Latency

 Decision Latency: pick next batches

 Task Count: machine learning

 Batch Size

 Pool Size

Sources of Latency

Task Latency Batch Latency Full-Run Latency

Recruitment Stragglers Decision Time

Qual & Training Mean pool latency Task Count

Work Pool variance Batch Size

Pool Size

Existing Solutions and Researches

 frequently repost tasks: high recruitment time

 algorithmically increase prices over time to attract more workers

 retainer model: pre-recruits a pool of crowd workers

 re-designing task interfaces: task specific

 using algorithmic analysis and machine learning to reduce task count

 Active learning: using data from completed tasks until the prediction quality

exceeds a user-defined threshold

 Batch size limitation

Reducing Latency – Our Thought

trade-
off

cost

accuracylatency

 Our Solution: CLAMShell

 reducing latency by sacrificing cost

 comprehensive solution

 general purpose labeling system

CLAMShell System

1. Task Latency

 Retainer pools

 Includes workers training and qualification in recruitment

2. Batch Latency

 Straggler mitigation

 Pool maintenance

3. Full-Run Latency

 Hybrid strategy: active learning + passive learning

CLAMShell System - Architecture

 User submits labeling tasks to

Batcher

 Task Selector picks incomplete

tasks and sends to LifeGuard

 LifeGuard schedules tasks in

batches and sends to Crowd

Platform

CLAMShell System - Architecture

 Crowd Platform

 Slots: retainer tasks

 empty, new task or duplicated task

 Completed labels are sent back to

Batcher

 Machine learning model: hybrid

sampler

 User can access the completed

labels and query for new

predictions

CLAMShell System - Optimization

Task

Latency

Batch

Latency

Full-Run

Latency

Recruitment Stragglers
Decision

Time

Qual &

Training

Mean pool

latency
Task Count

Work Pool variance Batch Size

Pool Size

1. Task Latency

 Retainer pools

 Includes workers training and

qualification in recruitment

2. Batch Latency

 Straggler mitigation

 Pool maintenance

3. Full-Run Latency

 Hybrid strategy: active

learning + passive learning

Batch Latency Optimization

 variability of worker latencies

within the pool

 variability within the tasks that a

single worker performs

 reduce both the mean of the

latency distribution and its

variance

 Straggler Mitigation and Pool

Maintenance

Straggler Mitigation: Reducing Variance

 replication-based approach

 worker: active / available

 task: active / complete / unassigned

 Default: route unassigned tasks to available workers

 Batch is finished until the slowest task completed

 Straggler mitigation: available workers received duplication of active tasks

immediately

 User gets the first completed copy and other copies get terminated

 Hide latency by sending task to other workers

Straggler Mitigation - Simulation

 Q1: Which task should be assigned to an available worker?

 longest-running active task, random task, task with fewest active workers or task

known by an oracle to complete the slowest

 Simulation result: the selection result doesn’t affect end-to-end latency.

 random performed as fast as the oracle solution

 fast workers complete almost all of the tasks

Straggler Mitigation - Simulation

 Q2: What is the most effective batch size for Straggler Mitigation?

 Let pool size to batch size ratio 𝑅 =
𝑁𝑝𝑜𝑜𝑙

𝑁𝑏𝑎𝑡𝑐ℎ

 Simulation result

 Using random selection algorithm and different pool size and R ratio

 Each batch gains more benefit from Straggler Mitigation when R is higher

Pool Maintenance: Better Mean Latency

 The workers in labeling pool are slow on average

 Strategy: continuously replaces slow workers in order to converge to a pool of

mostly fast workers.

 Latency threshold 𝑃𝑀ℓ

 Calculate mean latency for each worker based on finished task

 Reserve new workers in background for replacement

Pool Maintenance - Speed Convergence

 Mean latencies for a global set of workers: 𝜇𝑖

 𝜇𝑓 < 𝑃𝑀ℓ mean latency among fast workers with probability 1 − 𝑞

 𝜇𝑠 > 𝑃𝑀ℓ mean latency among slow workers with probability 𝑞

 Mean latency:

 Initial: 𝔼 𝜇𝑖 = 1 − 𝑞 𝜇𝑓 + 𝑞𝜇𝑠

 After first step: 𝔼 𝜇𝑖 = 1 − 𝑞 𝜇𝑓 + (𝑞 1 − 𝑞 𝜇𝑓 + 𝑞2𝜇𝑠)

 After nth step:

Pool Maintenance

 Simulation: replace slow workers after each batch

 batch latency falls quickly, nearly halving in just 15 to 20 batches

 converges quickly to the model’s predicted asymptote

 Threshold Selection: k standard deviations below the mean

 low enough to decrease average pool latency by releasing slow workers

 high enough to avoid discarding the fastest workers from the pool

 Pool Maintenance can be use in other critiria

 quality

 weighted average of quality and speed

Batch Latency - Combination

 Naïve approach

 Simply combine Straggler Mitigation and Pool Maintenance together

 Result: zero or negative gains compare to Straggler Mitigation alone

 Straggler Mitigation terminate slow tasks, skewing the latency of each worker

Batch Latency - Combination

 TermEst

 estimate the average latencies of terminated tasks based on the number of times a worker’s

task is terminated and the fast workers latency

 using estimated latencies on terminated tasks to calculate the latencies for slow workers

Batch Latency - Quality Control

 What if fast workers are spammers or inaccurate workers?

 In empirical data, fast workers are no more likely to be inaccurate than slow

workers

 Traditional quality control techniques are entirely complementary to our

techniques

 redundancy-based quality control algorithms

 P. G. Ipeirotis, F. Provost, and J. Wang. Quality management on Amazon Mechanical Turk.

SIGKDD, 2010.

 M. I. Jordan and T. M. Mitchell. Machine learning: Trends, perspectives, and prospects.

Science, 2015.

CLAMShell System - Optimization

Task

Latency

Batch

Latency

Full-Run

Latency

Recruitment Stragglers
Decision

Time

Qual &

Training

Mean pool

latency
Task Count

Work Pool variance Batch Size

Pool Size

1. Task Latency

 Retainer pools

 Includes workers training and

qualification in recruitment

2. Batch Latency

 Straggler mitigation

 Pool maintenance

3. Full-Run Latency

 Hybrid strategy: active

learning + passive learning

Full-Run Latency Optimization

 Learning Algorithm decreases task count, but is restricted by decision latency

and batch size

 CLAMShell uses uncertainty sampling to reduce the task count even further

 Increasing decision latency

 Decreasing batch size

 Hybrid learning: combines active and passive learning

 maximize pool parallelism

 hide batch size limitation

Hybrid learning

 Challenge of active learning

 A good batch size for learning algorithm to converge

 It is hard to train a good model on some labeling task

 Hybrid learning

 simultaneously acquires labels using the active selection strategy and random

sampling

 Point Selection: each worker in the pool has at least one point to label

 Model Retraining: retrains a model on all previously observed labels, both active

and passive learning samples

 Future work: weight on both types of points can be adjust by user

Hybrid learning – Batch Size

 Small: will take long time to label all points

 Large: slow on training, hard to converge

 According to our experiment, 10 to 40 is the a reasonable range for batch size

 With in that range, there was no significant correlation between batch size

and convergence rates on any single dataset

Hybrid learning - Decision Latency

 How to reduce the time to retrain a model?

 First, CLAMShell consider only a uniform random sample of the points for

selection in next batch

 Instead of considering all unlabeled points

 Second, CLAMShell continually retrains models asynchronously on the latest

available points

 There always a new trained module and a new batch available

CLAMShell System - Optimization

Evaluation

 Simulator:

 retainer-pool crowd workers

 uncertainty sampling on top of scikit-learn’s model training

 Live Experiments:

 deploy data labeling task on MTurk

 run at multiple times of day

 nearly 250,000 individual task assignments over several weeks

Evaluation – Dataset

Name # Instances Multi-class Features

MNIST 70,000 Yes 784

CIFAR-10 60,000 2 3072

 Public Dataset

 Machine generated data:

 scikit-learn data generator

Evaluation – Per-batch Tecniques

Evaluation – Hybrid Learning

Evaluation – Over All

Conclusion

 CLAMShell: Crowdsourcing data labeling system at interactive speeds

 Straggler mitigation, Pool maintenance and Hybrid learning

 Future work

 richer objective functions

 better way to train hybrid learning model

 integrating CLAMShell with data cleaning system

