CMPT 354:
Database System |

Lecture 9. Design Theory

Design Theory

* Design theory is about how to represent your data

to avoid anomalies.

Design 2

Student | Course

Design 1
Student | Course | Room
Mike 354 AQ3149
Mary 354 AQ3149
Sam 354 AQ3149

Mike 354 Course | Room
Mary 354 354 AQ3149
Sam 354 454 T9204

Four Types of Anomalies - 1

* What’s wrong?

Student Course Room
Mike 354 AQ3149
Mary 354 AQ3149
Sam 354 AQ3149

If every course is in only one room, contains
redundant information!

Four Types of Anomalies - 2

* What’s wrong?

Student Course Room
Mike 354 AQ3149
Mary 354 19204 ‘
Sam 354 AQ3149 |

If we update the room number for one tuple,
we get inconsistent data = an update anomaly

Four Types of Anomalies - 3

* What’s wrong?

Student Course Room

If everyone drops the class, we lose what
room the class is in! = a delete anomaly

Four Types of Anomalies - 4

* What’s wrong?

Student Course Room
Mike 354 AQ3149
Mary 354 AQ3149
Sam 354 AQ3149
454 [19204 !

Similarly, we can’t reserve a room without
students = an insert anomaly

Elimination of Anomalies

e |s it better?

Student | Course
Mike |354
Mary |354
Sam 354

Course Room
354 AQ3149
454 179204

How to find this decomposition?

Redundancy?
Update anomaly?
Delete anomaly?
Insert anomaly?

Normal Forms

e 1st Normal Form (1NF) = All tables are flat

e 2nd Normal Form = disused

* Boyce-Codd Normal Form (BCNF) = no bad FDs

e 3rd 4th 3nd 5" Normal Forms = see text books

15t Normal Form (1NF)

Student Courses
Student Courses

Mary CS145

Mary {CS145,CS229}
Mary CS229

Joe {CS145,CS106}
Joe CS145
Joe CS106
Violates 1NF. In 15t NF

1NF Constraint: Types must be atomic!

Normal Forms

e 1st Normal Form (1NF) = All tables are flat

e 2nd Normal Form = disused What's this?

* Boyce-Codd Normal Form (BCNF) = no ba .@

e 3rd 4th 3nd 5t Normal Forms = see text books

10

Outline

1. Functional Dependency (FD)

2. Inference Problem

3. Closure Algorithm

Functional Dependency

Def: Let A,B be sets of attributes
We write A = B or say A functionally determines B if,

for any tuples t; and t,:
t,[A] = t,[A] implies t,[B] = t,[B]

and we call A = B a functional dependency

A->B means that
“Whenever two tuples agree on A then they agree on B.”

A Picture Of FDs

Defn (again):
Given attribute sets A={A,,...,A,} and
B={B,,..B,}inR,

13

A Picture Of FDs

Defn (again):
Given attribute sets A={A,,...,A,} and
B={B,,..B,}inR,

The functional dependency A= B on
R holds if for any t,t; in R:

14

A Picture Of FDs

Defn (again):
Given attribute sets A={A,,...,,A..} and
B={B,,..B,}inR,

The functional dependency A= B on
R holds if for any t,t; in R:

t[A;] = t[A;] AND t[A,]=t,[A,] AND ..
AND ti[Am] = tj[Am]

If t1,t2 agree here..

15

A Picture Of FDs

Defn (again):
Given attribute sets A={A,,...,,A..} and
B={B,,..B,}inR,

A, A, B, B,
! A k The functional dependency A= B on
t R holds if for any t,t; in R:
4 if t[A] = 15 [A;] AND ti[Az]:tj [A,] AND
o . AND t[A,] = t[A,]
If t1,t2 agree here.. ...they also agree here! then ti[Bl] = tj[Bl] AND ti[Bz]=tj[Bz]

AND ... AND £[B,] = t[B,]

16

Example

An FD holds, or does not hold on a table:

EmpID |[Name Phone Position

E0045 Smith 1234 Clerk

E3542 Mike 9876 Salesrep
El1111 Smith 9876 Salesrep
E9999 Mary 1234 Lawyer

v Position = Phone

x Phone =2 Position

v Phone, Name - Position

Exercise - 1

An FD holds, or does not hold on a table:

Name Category |Color Department Price
Gizmo Gadget Green Toys 49
Tweaker Gadget Green Toys 49
Gizmo Stationary |Green Office-supply 59

1. Name -2 Color

2. Category > Department

3. Color, Category = Color

Exercise - 2

>

Find at least three FDs which
do not hold on this table:

{ P> A }
{ P> A }
{ P> A }

W | =] = G| =

N[N RN ND]
(N SN Y N e
»—*UJU]»—*UJU

||| w|aa]| ™

19

Outline

1. Functional Dependency (FD)

2. Inference Problem

3. Closure Algorithm

An Interesting Observation

Provided FDs:

1. Name = Color
2. Category = Department
3. Color, Category =2 Price

Does it always hold? Name, Category = Price

If we find out from application domain that a relation satisfies
some FDs, it doesn’t mean that we found all the FDs that it
satisfies! There could be more FDs implied by the ones we have

Inference Problem

Whether or not a set of FDs imply another FD?

This is called Inference problem

Answer: Three simple rules called
Armstrong’s Rules.
1. Split/Combine,
2. Reduction, and
3. Transitivity

William Ward Armstrong is a Canadian mathematician and computer scientist. He earned his Ph.D.
from the University of British Columbia in 1966 and is most known as the originator Armstrong's
axioms of dependency in a Relational database.!"]

1. Split/Combine

Ay, .., A_ > BB,

23

1. Split/Combine

Ay, .., A_ > BB,

... IS equivalent to the following n FDs...

A,..., A =2 B fori=1,..,n

24

1. Split/Combine

And vice-versa, A,,..., A, =2 B, fori=1,...,n

... IS equivalent to ...

Ay, .., A_>B,,..B,

25

2. Reduction/Trivial

Ay ...An 2 A forany j=1,..,m

26

3. Transitive

A, .., A, 2 B,..,B and
B,,..,.B. > Cy,...,C,

27

3. Transitive

A, .., A, 2 B,..,B and
B,,...,.B, > Cy...,Cp

implies
A,..., A =2 C,..,C.

28

Inferred FDs

Example:
Inferred FDs: Provided FDs:
1 {Name] > {Color
4. Name, Category = Name ? 2. {Category} = {Dept.}
5. Name, Category = Color 3. {Color, Category} =2
{Price}

6. Name, Category = Category

7. Name, Category = Color, Category

8. Name, Category —> Price

Which FDs hold?

29

Inferred FDs

Example:
Inferred FDs: Provided FDs:
1 {Name} > (Color}
4. Name, Category = Name Trivial 2. {Category} = {Dept.}
5. Name, Category = Color Transitive (4 -> 1) 3. {Color, Category} 2
6. Name, Category > Category Trivial e

7. Name, Category = Color, Category Split/combine (5 + 6)

8. Name, Category —> Price Transitive (7 -> 3)

Can we find an algorithmic way to do this?

30

Outline

1. Functional Dependency (FD)

2. Inference Problem

3. Closure Algorithm

Closure of a set of Attributes

Given a set of attributes Ay, ..., A, and a set of FDs F:

Then the closure, {A,, ..., A} is the set of attributes B s.t. {A, ..., A,} = B

Example: F= |name = color
category > department
color, category - price

Closures:

{name}+* = {name, color}
{name, category}+* = {name, category, color, dept, price}
{color}* = {color}

32

Closure Algorithm

Repeat until X doesn’t change; do:
if {B,..,B,}=2>CisinF
and {B, ..., B,} © X
then add Cto X.

Return X as X*

Start with X=1{A,, ..., A } and set of FDs F.

33

Closure Algorithm

Start with X={A4, ..., A,}, FDs F.
Repeat until X doesn’t change; do:
if {By,...,B,}2CisinF
and {B4, ..., B,} € X:
then add Cto X.
Return X as X*

{name, category}+ =
{name, category}

name -> color
category > dept

color, category - price

34

Closure Algorithm

Start with X={A4, ..., A,}, FDs F.
Repeat until X doesn’t change; do:
if {By,...,B,}2CisinF
and {B4, ..., B,} € X:
then add Cto X.
Return X as X*

{name, category}+ =
{name, category, color}

name > color
category > dept

color, category - price

35

Closure Algorithm

Start with X={A4, ..., A,}, FDs F.
Repeat until X doesn’t change; do:
if {By,...,B,}2CisinF
and {B4, ..., B,} € X:
then add Cto X.
Return X as X*

name -> color
category > dept

color, category - price

{name, category}+ =
{name, category, color, dept}

36

Closure Algorithm

Start with X={A4, ..., A,}, FDs F.
Repeat until X doesn’t change; do:
if {By,...,B,}2CisinF
and {B4, ..., B,} € X:
then add Cto X.
Return X as X*

name > color
category > dept

color, category - price

{name, category}+ =
{name, category, color, dept,
price}

37

Exercise - 3

Compute {A,B} = {A, B,

Compute {A, F}* ={A, F,

> >

=

m 0 O
\ 28 20 2 Z

0o O mo

38

Exercise - 3

> >
m 0 O
\ 2 20 2 \Z
oo mo

Compute {A,B}*={A, B, C, D

Compute {A, F}*={A, F, B

39

Exercise - 3

> >
m 0 O
\ 2 20 2 \Z
oo mo

Compute {A,B} ={A, B, C, D, E}

Compute {A, F}*={A, B, C,D, E, F}

40

Exercise - 4

* Find all FD’s implied by

-

N2\ 2\ 4
O 0 O

o > >
O

Requirements
1. Non-trivial FD (i.e., no need to return A, B 2> A)

2. The right-hand side contains a single attribute (i.e., no need to return A, B 2> C, D)

Exercise - 4

Step 1: Compute X*, for every set of attributes X:

Given F =

o> >

- -

O w
22\ %

O o O

{A}+
{B}*
{C}
{D}*

(1 | T 1 1 B | B S IREE S BECS RN

(I I | I | BCCS BEES REESECN RS REEN

| RS BECS RECS BTN |

42

Given F =

Exercise - 4

Step 1: Compute X*, for every set of attributes X:

{A}* = {A}
{B}*
{C}
{D}*

™ > >

- -

O w
22\ %

O o O

43

Given F =

™ > >
O
22\ %

Exercise - 4

O o O

Step 2: Enumerate all FDs X2 Y,s.t. Yc Xtand XN Y = J:

{A}+ = {A}

{B}+ = {B,D}

{CH = {C} B>0D
{D}+ = {D} A,B > C
{A,B}* = {A,B,C,D} A,B > D
{A,C}+ = {A,C} A,D > B
{A,D}* = {A,B,C,D} A,D > C
{B,C}+ = {B,C,D} B,C > D
{B,D}* = {B,D} A,B,C > D
{C,D}+ = {C,D} A,B,D > C
{A,B,C}* = {A,B,C,D} A,C,D > B
{A,B,D}* = {A,B,C,D}

{A,C,D}* = {A,B,C,D}

{B,C,D}+* = {B,C,D}

{A,B,C,D}* = {A,B,C,D}

Review

1. Functional Dependency (FD)
* Whatisan FD?

2. Inference Problem
 Whether or not a set of FDs imply another FD?

3. Closure
* How to compute the closure of attributes?

High-level Idea

Student Course | Room

Mike 354 AQ3149
Mary 354 AQ3149
Sam 354 AQ3149
Two Steps
1. Search for “bad” FDs in the table
2. Keep decomposing the table into

sub-tables until no more bad FDs

Student | Course Course | Room
Mike 354 354 AQ3149
454 179204
Mary 354 Like a debugging process ©

Sam 354

46

Outline

e “Good” vs. “Bad” FDs

* Boyce-Codd Normal Form

* Decompositions

“Good” vs. “Bad” FDs

EmpID |[Name |Phone |Position
E0045 |Smith |1234 Clerk
E3542 |Mike 9876 Salesrep
E1111 |Smith |9876 Salesrep
E9999 | Mary 1234 Lawyer

EmplID = Name, Phone, Position

Good FD since EmpID can determine everything :
EmpIDis a
. Ke
Position = Phone .

Bad FD since Phone cannot determine everything

48

Exercise - 1

Student | Course | Room

Mike 354 AQ3149
Mary 354 AQ3149
Sam 354 AQ3149

Student, Course 2 Room

Course = Room

Good FD!

Bad FD!

What’s wrong with “Bad” FDs

 If X 2Yis a Bad FD, then X functionally determines
some of the attributes; therefore, those other
attributes can be duplicated

* Recall: this means there is redundancy
* And redundancy like this can lead to data anomalies!

Student | Course | Room

Mike 354 AQ3149
Mary 354 AQ3149
Sam 354 AQ3149

Outline

e “Good” vs. “Bad” FDs

* Boyce-Codd Normal Form

* Decompositions

Boyce-Codd Normal Form (BCNF)

* Main idea is that we define “good” and “bad” FDs
as follows:

« X > Aisa“good FD” if X is a key
* |n other words, if A is the set of all attributes

e X 2> Aisa “bad FD” otherwise

* We will try to eliminate the “bad” FDs!

Boyce-Codd Normal Form (BCNF)

A relation R is in BCNF if:
there are no “bad” FDs

A relation R is in BCNF if:

if {A,, ..., A,} = Bis a non-trivial FD in R
then {A;, ..., A,} is a key for R

Equivalently: V sets of attributes X, either (X* = X) or (X* = all attributes)

Example

Is this table in BCNF?

{SIN} > {Name,City}

Fred 123-45-6789 | 604-555-1234 | Vancouver

Fred 123-45-6789 | 604-555-6543 | Vancouver

Joe 987-65-4321 |908-555-2121 |Burnaby

Joe 987-65-4321 |908-555-1234 | Burnaby
— Not in BCNF

This FD is bad because
it is not a key

What is the key?
{SIN, PhoneNumber}

Example

Fred |123-45-6789

Vancouver

Joe 987-65-4321

Burnaby

123-45-6789 604-555-1234
123-45-6789 604-555-6543
987-65-4321 908-555-2121
987-65-4321 908-555-1234

Now in BCNF!

{SIN} -> {Name,City}

This FD is now good
because it is the key

BCNF Decomposition Algorithm

BCNFDecomp(R):

BCNF Decomposition Algorithm

BCNFDecomp(R):
Find a non-trivial bad FD: X =2 Y

X is not a key, i.e.,
X* # [all attributes]

57

BCNF Decomposition Algorithm

BCNFDecomp(R):
Find a non-trivial bad FD: X =2 Y

If no “bad” FDs found, in

if (not found) then Return R
BCNF!

58

BCNF Decomposition Algorithm

BCNFDecomp(R):
Find a non-trivial bad FD: X =2Y

if (not found) then Return R

Split R into X* and X+[rest attributes]

One table is X*

59

BCNF Decomposition Algorithm

BCNFDecomp(R):
Find a non-trivial bad FD: X =2Y

if (not found) then Return R

Split R into X* and X+[rest attributes]

The other table is
X + (R —X*)

60

BCNF Decomposition Algorithm

BCNFDecomp(R):
Find a non-trivial bad FD: X =2 Y

if (not found) then Return R

Split R into X* and X+[rest attributes]

Proceed recursively until no
more “bad” FDs!

Return BCNFDecomp(R;), BCNFDecomp(R,)

61

BCNF Decomposition Algorithm

BCI\.IFDecomp(R'):. Only look at the FD in the
Find a non-trivial bad FD: X Y given set

if (not found) then Return R
Split R into X* and X+[rest attributes]

Return BCNFDecomp(R,), BCNFDecomp(R,) Need to imply all FDs for Ry
and R,

Example

Student | Course | Room

Mike 354 AQ3149
Mary 354 AQ3149
Sam 354 AQ3149

Student | Course
Mike 354
Mary 354
Sam 354

Course | Room
354 AQ3149
454 179204

Course =2 Room

63

Exercise - 2

BCNFDecomp(R):
Find a non-trivial bad FD: X =Y

if (not found) then Return R
Split R into X* and X+[rest attributes]

Return BCNFDecomp(R;), BCNFDecomp(R,)

{A} > {B,C}
{C} > {D}

64

Exercise - 2

R(AIBICIDIE)
R(A,B,C,D,E) {A} > {B,C}
{A} = {A,B,C,D} # {A,B,C,D,E} {C} > {D}

R.(A,B,C,D)
{C}* ={C,D} #{A,B,C,D}

65

Outline

e “Good” vs. “Bad” FDs

* Boyce-Codd Normal Form

* Decompositions

Decompositions in General

R(A1, +s+,An, By, ..

I’Bm’cl’lll

» Cp)

/

N

Ri(Ay, «+v.,Ay,By, v v, Bp)

Ry(Aq, ..

e AnrCapeeey Co)

R, =the projection of Ron A, ..

R, =the projectionof Ron A,, ..., A, C,, ..., C

LA, By .., B

P

67

Lossless Decompositions

It is a Lossless
decomposition

Gizmo 19.99 Gadget
OneClick 24.99 Camera
Gizmo 19.99 Camera
v \
Gizmo 19.99 Gizmo Gadget
OneClick | 24.99 OneClick Camera
17110 Gizmo Camera

Lossless Decompositions

N

A decomposition R to (R1, R2) is lossless if R = R1 Join R2

69

Lossy Decomposition

Gizmo 19.99 Gadget
OneClick 24.99 Camera
Gizmo 19.99 Camera

/

Gizmo Gadget
OneClick Camera
Gizmo Camera

.

However
sometimes it isn’t

What's wrong
here?

19.99 Gadget
24.99 Camera
19.99 Camera

Lossless Decompositions

— .

If {A,,..,A}=2>{B, .. B} Note: don’t need
Then the decomposition is lossless {A, ., A} 2 {Cy, ..., Cp}

BCNF decomposition is always lossless.
71

A Problem with BCNF

\

{Unit} = {Company}
{Company,Product} = {Unit}

{Unit} = {Company}

We do a BCNF decomposition

on a “bad” FD:
{Unit}* = {Unit, Company}

We lose the FD {Company, Product} = {Unit}!!

72

The Problem

e We started with a table R and FDs F

* We decomposed R into BCNF tables Ry, R,, ...
with their own FDs F,, F, ...

* We insert some tuples into each of the relations—
which satisfy their local FDs but when reconstruct it
violates some FD across tables!

Practical Problem: To enforce FD, must
reconstruct R—on each insert!

Trade-offs

* Different Normal Forms

Prevent Decomposition Problems
VS

Remove Redundancy

BCNF still most common- with additional steps to
keep track of lost FDs...

Summary

e “Good” vs. “Bad” FDs

* Boyce-Codd Normal Form

* Decompositions

Acknowledge

* Some lecture slides were copied from or inspired by the
following course materials

* “W4111: Introduction to databases” by Eugene Wu at
Columbia University

e “CSE344: Introduction to Data Management” by Dan Suciu at
University of Washington

 “CMPT354: Database System |” by John Edgar at Simon Fraser
University

* “CS186: Introduction to Database Systems” by Joe Hellerstein
at UC Berkeley

e “CS145: Introduction to Databases” by Peter Bailis at Stanford

e “CS 348: Introduction to Database Management” by Grant
Weddell at University of Waterloo

