
CMPT 354:
Database System I

Lecture 6. Basics of Query Processing and Indexing

1

Outline

• Query Processing
• What happens when an SQL query is issued?

• Indexing
• How to speed up query performance?

2

Query Processing Steps

3

SQL Parser

Logical Optimization

Query Execution

Physical Optimization

SQL query

Disk

Query
optimization

Example

4

• Offering (oID, dept, cNum, term, instructor)
• Took (sID, oID, grade)

Q: Student number of all students who have taken CMPT 354

SELECT sID
FROM Offering O, Took T
WHERE O.oID = T.oID

AND O.dept = ‘CMPT’
AND O.cNum = ‘354’

SQL Parser

• From the input SQL text to a logical plan

5

SELECT sID
FROM Offering O, Took T
WHERE O.oID = T.oID

AND O.dept = ‘CMPT’
AND O.cNum = ‘354’

Relational algebra expression is also
called the “logical query plan”

psID (sdept = ‘CMPT’ Ù cNum = 354 (Offering ⨝ Took))

Offering Took

⨝

sdept = ‘CMPT’ Ù cNum = 354

psID

Offering (oID, dept, cNum, term, instructor)

Took (sID, oID, grade)

Logical Optimization

• Find the optimal logical plan

6

Offering Took

⨝

sdept = ‘CMPT’ Ù cNum = 354

psID

Offering Took

⨝

sdept = ‘CMPT’ Ù cNum = 354

psID

Physical Optimization

• Find the optimal physical plan

7

Offering Took

⨝

sdept = ‘CMPT’ Ù cNum = 354

psID

(File Scan) (File Scan)

(Scan & write to T)

(Nested loop)

Offering Took

⨝

psID

(File Scan) (File Scan)

(Scan & write to T)

(Hash Join)

V.S.
sdept = ‘CMPT’ Ù cNum = 354

Query Execution

8

Offering Took

⨝

psID

(File Scan) (File Scan)

(Scan & write to T)

(Hash Join)

sdept = ‘CMPT’ Ù cNum = 354

Machine Code
(e.g., C++)

“Volcano Iterator Model”

• From a physical plan to actual machine code

Summary

• Logical plans:
• Created by the parser from the input SQL text
• Expressed as a relational algebra tree
• Each SQL query has many possible logical plans

• Physical plans:
• Goal is to choose an efficient implementation for each

operator in the RA
• Each logical plan has many possible physical plans

• Query Optimization:
• Find the optimal logical plan
• Find the optimal physical plan

9

Outline

• Query Processing
• What happens when an SQL query is issued?

• Indexing
• How to speed up query performance?

10

Query Performance
• My database application is too slow… why?
• One of the queries is very slow… why?

• To address these problems, we need to understand:
• How is data organized on disk
• What is an index
• How to select indexes

11

Data Storage

• DBMSs store data in files
• Most common

organization is row-wise
storage
• On disk, a file is split into

blocks
• Each block contains a

set of tuples

12

sID dept cNum Term instructor

10 CMPT 345 SP 2018 Jiannan

20 CMPT 454 FA 2018 Martin

… … … … …

10 CMPT 345 SP 2018 Jiannan

20 CMPT 454 FA 2018 Martin
Block 1

30 … … … …

40 …
Block 2

50

60
Block 3

70

80
Block 4

In the example, we have 4 blocks with 2 tuples each

Scanning a Data File

13

• Data file is stored on Disk
• Consequence: Sequential IO is MUCH FASTER than

random IO
• Good: read blocks 1, 2, 3, 4, 5
• Bad: read blocks 2342, 11, 321, 9

• Rule of thumb:
• Random reading 1-2% of the file ≈ sequential scanning the

entire file

Data File Types

• Heap file
• Unsorted

• Sequential file
• Sorted according to some attribute(s) called key

14

Note: key here means something different from primary
key: it just means that we order the file according to that
attribute. In our example we ordered by sID. Might as well
order by instructor, if that seems a better idea for the
applications running on our database.

Index Motivation (1)

• Suppose we want to search for students of a specific age

• First idea: Sort the records by age… we know how to do
this fast!

• How many IO operations to search over N sorted records?
• Simple scan: O(N)
• Binary search: O(𝐥𝐨𝐠𝟐𝑵)

Student(name, age)

Could we get even cheaper search? E.g. go from 𝐥𝐨𝐠𝟐𝑵
à 𝐥𝐨𝐠𝟐𝟎𝟎𝑵?

Index Motivation (2)

• What about if we want to insert a new student, but
keep the list sorted?

• We would have to potentially shift N records,
requiring up to ~ 2*N/P IO operations (where P = #
of records per page)!

4,5 6,71,3 3,4 5,61,2

2

7,

Could we get faster insertions?

Index Motivation (3)

• What about if we want to be able to search quickly
along multiple attributes (e.g. not just age)?
• We could keep multiple copies of the records, each

sorted by one attribute set… this would take a lot of
space

Can we get fast search over multiple attribute
sets without taking too much space?

We’ll create separate data structures called
indexes to address all these points

Index

• An additional file, that allows fast access to records in
the data file given a search key
• The index contains (key, value) pairs:
• The key = an attribute value (e.g., student ID or age)
• The value = a pointer to the record

• An index can store the full rows it points to (primary
index) or pointers to those rows (secondary index)
• We’ll mainly consider secondary indexes

• Could have many indexes for one table

18

Different Keys

• Primary key
• uniquely identifies a tuple

• Key of the sequential file
• how the data file is sorted

• Index key
• how the index is organized

19

Example 1: Index on sID

20

10 CMPT 345 SP 2018 Jiannan

20 CMPT 454 FA 2018 Martin

30 … … … …

40 …

50

60

70

80

10

20

30

40

50

60

70

80

Index
Data File

Example 2: Index on cNum

21

10 CMPT 345 SP 2018 Jiannan

20 CMPT 454 FA 2018 Martin

30 … 110 … …

40 … 276

50 225

60 383

70 102

80 470

102

110

225

276

354

383

454

470

Index
Data File

Index Organization

• Common indexes:
• Hash tables
• B+ trees

• Specialized indexes
• R-trees
• Inverted index
• …

22

B+ Tree Example

80

20 60 100 120 140

10 15 18 20 30 40 50 60 65 80 85 90

10 12 15 20 28 30 40 60 63 80 84 89

K = 30?

30 < 80

30 in [20,60)

To the data!
Not all nodes pictured

30 in [30,40)

Clustered vs. Unclustered Index

30

22 25 28 29 32 34 37 38

19 22 27 28 30 33 35 37

30

22 25 28 29 32 34 37 38

19 2227 28 3033 3537

Clustered Unclustered

Index File

Data file

Clustered vs. Unclustered Index

• Recall that for a disk with block access, sequential IO is
much faster than random IO

• For exact search, no difference between clustered /
unclustered

• For range search over R values: difference between
1 random IO + R sequential IO, and R random IO

26

Cost

Percentage tuples retrieved0 100

SELECT *
FROM R
WHERE R.K > ? And R.K < ?

Sequential Scan

Clustered Index

Un
clu

st
er

ed
In

de
x

Summary

• Index = a file that enables direct access to records
in another data file
• B+ tree / Hash table
• Clustered/unclustered

• Data resides on disk
• Organized in blocks
• Sequential IO is more efficient than random IO
• Random read 1-2% of data worse than sequential scan

of the entire file

27

• Offering (oID, dept, cNum, term, instructor)

Creating Indexes in SQL

28

CREATE INDEX IDX1 ON Offering(dept)

SELECT oID FROM Offering
WHERE dept = ‘CMPT’

SELECT oID FROM Offering
WHERE cNum = ‘354’

SELECT oID FROM Offering
WHERE dept = ‘CMPT’ AND cNum = ‘354’

(A)

(B)

(C)

Which query(s) could be affected by IDX1?

• Offering (oID, dept, cNum, term, instructor)

Creating Indexes in SQL

29

CREATE INDEX IDX2 ON Offering(dept, cNum)

SELECT oID FROM Offering
WHERE dept = ‘CMPT’

SELECT oID FROM Offering
WHERE cNum = ‘354’

SELECT oID FROM Offering
WHERE dept = ‘CMPT’ AND cNum = ‘354’

(A)

(B)

(C)

Which query(s) could be affected by IDX2?

• How many indexes could we create?

• Which indexes should we create?

Which Indexes?

30

Which Indexes?

• The index selection problem
• Given a table, and a “workload” (SFU CourSys

application with lots of SQL queries), decide which
indexes to create (and which ones NOT to create!)

• Who does index selection:
• The database administrator DBA

• Semi-automatically, using a database administration tool

31

Index Selection: Which Search Key

• Make some attribute K a search key if the WHERE
clause contains:
• An exact match on K
• A range predicate on K
• A join on K

32

The Index Selection Problem 1

• Your workload is

33

SELECT sID
FROM Student
WHERE name = ?

SELECT sID
FROM Student
WHERE gender = ?

100000 queries 100000 queries

Which one is better?

A. Index on name

B. Index on gender

The Index Selection Problem 2

• Your workload is

34

SELECT sID
FROM Student
WHERE name like ?

SELECT sID
FROM Student
WHERE age = ?

100000 queries 100000 queries

Which one is better?

A. Index on name

B. Index on age

The Index Selection Problem 3

• Your workload is

35

SELECT sID
FROM Student
WHERE name = ?

SELECT sID
FROM Student
WHERE age = ?

100000 queries 100 queries

Which one(s) are useful?

A. Index on name
B. Index on age
C. Index on name, age
D. Index on age, name

The Index Selection Problem 4

• Your workload is

36

SELECT sID
FROM Student
WHERE fname = ?

SELECT sID
FROM Student
WHERE fname = ? AND age > ?

100000 queries 100000 queries

Which one is better?

A. Index on (fname, age)
B. Index on (age, fname)

The Index Selection Problem 5

• Your workload:

37

SELECT sID
FROM Student
WHERE name = ?

SELECT sID
FROM Student
WHERE age = ?

100000 queries 100 queries

Which one(s) are useful?

A. Index on name
B. Index on age
C. Index on name, age
D. Index on age, name

INSERT INTO Student
VALUES (?, …, ?)

100000 queries

Basic Index Selection Guidelines

• Consider queries in workload in order of importance

• Consider relations accessed by query
• No point indexing other relations

• Look at WHERE clause for possible search key

• Try to choose indexes that speed up multiple queries

38

Summary
• Query Processing
• SQL Parser
• Logical Optimization
• Physical Optimization
• Query Execution

• Indexing
• Data Storage
• Index motivation
• Index Selection

39

Acknowledge
• Some lecture slides were copied from or inspired by the

following course materials
• “W4111: Introduction to databases” by Eugene Wu at

Columbia University
• “CSE344: Introduction to Data Management” by Dan Suciu at

University of Washington
• “CMPT354: Database System I” by John Edgar at Simon Fraser

University
• “CS186: Introduction to Database Systems” by Joe Hellerstein

at UC Berkeley
• “CS145: Introduction to Databases” by Peter Bailis at Stanford
• “CS 348: Introduction to Database Management” by Grant

Weddell at University of Waterloo
40

