CMPT 354:
Database System |

Lecture 6. Basics of Query Processing and Indexing

Outline

* Query Processing
* What happens when an SQL query is issued?

* Indexing
* How to speed up query performance?

Query Processing Steps

SQL query
SQL Parser
/‘
Logical Optimization
Query
optimization

*
oo
- Pl Optmiston
T cuerybretion
T

Physical Optimization

Query Execution

 Disk

Example

e Offering (oID, dept, cNum, term, instructor)
* Took (sID, olD, grade)

Q: Student number of all students who have taken CMPT 354

sID

Offering 0, Took T
0.0ID = T.oID
AND O.dept = ‘CMPT’
AND 0.cNum = ‘354’

Offering (oID, dept, cNum, term, instructor)

Took (sID, olID, grade)

SQL Parser

* From the input SQL text to a logical plan

sID TCSID

Offering 0, Took T
0.0ID = T.0ID
AND 0.dept = ‘CMPT’ G dept = ‘CMPT’ A cNum = 354

AND O.cNum = ‘354’

Tlsp (Gdept _ CMPT’ A cNum = 354 (Offering D<1 Took)) / \

Relational algebra expression is also Offering Took

called the “logical query plan”

Logical Optimization

* Find the optimal logical plan

TC
sID TCS/D

O dept = CMPT A cNum = 354 >
) /

Gdept = ‘CMPT’ AcNum = 354

2N

Offering Took Offering Took

Physical Optimization

* Find the optimal physical plan

TCS/D TESID
(Nested loop ‘ H : ‘
ash Join
‘ <
| pe/ V.S. ;é/
(Scan & write'to T) (Scan & write'to T)
O dept = ‘CMPT 1 cNum = 354 O dept = ‘MPT’ A chium = 354
Offering Took Offering Took

(File Scan) (File Scan) (File Scan) (File Scan)

Query Execution

* From a physical plan to actual machine code

TCS/D

(Hash Jom)
N “Volcano Iterator Model”

> Machine Code
(Scan & write'to T) \ (e.g., C++)

dept = 'CMPT’ A cNum = 354

Offering Took
(File Scan) (File Scan) :

Summary

* Logical plans:
* Created by the parser from the input SQL text
* Expressed as a relational algebra tree
e Each SQL query has many possible logical plans

* Physical plans:

* Goal is to choose an efficient implementation for each
operator in the RA

e Each logical plan has many possible physical plans
* Query Optimization:

* Find the optimal logical plan

* Find the optimal physical plan

Outline

* Query Processing
* What happens when an SQL query is issued?

* Indexing
* How to speed up query performance?

Query Performance

* My database application is too slow... why?
* One of the queries is very slow... why?

* To address these problems, we need to understand:
* How is data organized on disk
* What is an index
* How to select indexes

Data Storage

e DBMSs store data in files

* Most common
organization is row-wise

storage

* On disk, a file is split into
blocks

e Each block contains a
set of tuples

siD | dept cNum | Term instructor
10 | CMPT | 345 SP 2018 | Jiannan
20 | CMPT | 454 FA 2018 | Martin
10 | CMPT | 345 SP 2018 | Jiannan
Block 1
20 | CMPT | 454 FA 2018 | Martin
30 | ...
Block 2
40 | ...
50
Block 3
60
70
Block 4
80

In the example, we have 4 blocks with 2 tuples each

Scanning a Data File

e Data file is stored on Disk

* Consequence: Sequential 10 is MUCH FASTER than
random |10
e Good: read blocks 1, 2, 3,4,5
 Bad: read blocks 2342, 11, 321, 9

e Rule of thumb:

 Random reading 1-2% of the file = sequential scanning the
entire file

Data File Types

* Heap file
 Unsorted

e Sequential file
* Sorted according to some attribute(s) called key

Note: key here means something different from primary
key: it just means that we order the file according to that
attribute. In our example we ordered by sID. Might as well
order by instructor, if that seems a better idea for the
applications running on our database.

Index Motivation (1)

* Suppose we want to search for students of a specific age

* First idea: Sort the records by age... we know how to do
this fast!

* How many IO operations to search over N sorted records?
* Simple scan: O(N)
* Binary search: O(log, N)

Could we get even cheaper search? E.g. go from log, N
910g200 N~

Index Motivation (2)

 What about if we want to insert a new student, but
keep the list sorted?

EErEE — IR

 We would have to potentially shift N records,
requiring up to ~ 2*N/P 10 operations (where P = #
of records per page)!

Could we get faster insertions?

Index Motivation (3)

 What about if we want to be able to search quickly
along multiple attributes (e.g. not just age)?

* We could keep multiple copies of the records, each
sorted by one attribute set... this would take a lot of
space

Can we get fast search over multiple attribute
sets without taking too much space?

We’ll create separate data structures called
indexes to address all these points

Index

* An additional file, that allows fast access to records in
the data file given a search key

* The index contains (key, value) pairs:
* The key = an attribute value (e.g., student ID or age)
* The value = a pointer to the record

- An index can store the full rows it points to (primary
index) or pointers to those rows (secondary index)
- We’ll mainly consider secondary indexes

* Could have many indexes for one table

Different Keys

* Primary key
* uniquely identifies a tuple

* Key of the sequential file
* how the data file is sorted

* Index key

* how the index is organized

Example 1: Index on sID

Data File

Index

/ 10 | CMPT | 345 | SP 2018 | Jiannan
10 // 20 | CMPT | 454 | FA 2018 | Martin
20 -

/,Iso
30 .

40

40 "
50 N I — Y
60 - ———»60
70 .

- ————)70
80 .

- ————] a0

20

Example 2: Index on cNum

Index

102

110]

225

276]

354

383]

454

470 —

Data File
10 | CMPT | 345 SP 2018 | Jiannan
20 | CMPT | 454 FA 2018 | Martin
30 110
40 276
50 225
60 383
70 102
80 470

21

Index Organization

e Common indexes:
 Hash tables
* B+ trees

* Specialized indexes
* R-trees
* Inverted index

B+ Tree Example

K=30?

30< &80 80

30in [20,60) 20 | 60 100 | 120 | 140

301n [30,40) 10 15| 18 20

60 | 65 80 | 8 | 90
1 ' VAR

30 | 40 | 50
\ R i N1 rzlz1lyz I
] \ \ / \\ l\ // / Not all nodes pictured
12 20

TO the data! 10 15 26 30 40 60 63 8 8 89

Clustered vs. Unclustered Index

30 30
/ \ / \
/ \ Index File / \
22 25 28 29 32 34 37 38 22 25 28 29 32 34 37 38
UV TV N /
19 22 27 28 30 33 35 37 Data file 19 33 27 22 37 28 35 30

Clustered Unclustered

Clustered vs. Unclustered Index

* Recall that for a disk with block access, sequential 10 is
much faster than random IO

* For exact search, no difference between clustered /
unclustered

* For range search over R values: difference between
1 random IO + R sequential 10, and R random 10

X

R
R.K > ? And R.K < ?

X
)
[}
<
S
<
5
g
)

Sequential Scan

Cost

0 Percentage tuples retrieved 100

Summary

* Index = a file that enables direct access to records
in another data file
* B+ tree / Hash table
e Clustered/unclustered

* Data resides on disk
* Organized in blocks
e Sequential 10 is more efficient than random 10

 Random read 1-2% of data worse than sequential scan
of the entire file

Creating Indexes in SQL

» Offering (oID, dept, cNum, term, instructor)

IDX1 Offering(dept)

Which query(s) could be affected by IDX1?

oID Offering
(A) dept = ‘CMPT’
(B) oID Offering
cNum = ‘354’
(€) oID Offering
dept = ‘CMPT’ AND cNum = ‘354’

Creating Indexes in SQL

» Offering (oID, dept, cNum, term, instructor)

IDX2 Offering(dept, cNum)

Which query(s) could be affected by IDX2?

oID Offering
(A) dept = ‘CMPT’
(B) oID Offering
cNum = ‘354’
(€) oID Offering
dept = ‘CMPT’ AND cNum = ‘354’

Which Indexes?

* How many indexes could we create?

* Which indexes should we create?

Which Indexes?

* The index selection problem

e Given a table, and a “workload” (SFU CourSys
application with lots of SQL queries), decide which
indexes to create (and which ones NOT to create!)

* Who does index selection:
e The database administrator DBA

* Semi-automatically, using a database administration tool

Index Selection: Which Search Key

* Make some attribute K a search key if the WHERE
clause contains:
* An exact match on K
* Arange predicate on K
* Ajoinon K

The Index Selection Problem 1

* Your workload is

100000 queries 100000 queries
sID sID
Student Student
name = ? gender = ?

Which one is better?
A. Index on name

B. Index on gender

The Index Selection Problem 2

* Your workload is

100000 queries 100000 queries
sID sID
Student Student
name like ? age = ?

Which one is better?
A. Index on name

B. Index on age

The Index Selection Problem 3

* Your workload is

100000 queries 100 queries
sID sID
Student Student
name = ? age = ?

Which one(s) are useful?

A. Index on hame

B. Index on age
C. Index on name, age

D. Index on age, name

The Index Selection Problem 4

* Your workload is

100000 queries 100000 queries
sID sID
Student Student
fname = 7? fname = ? AND age > ?

Which one is better?

A. Index on (fname, age)
B. Index on (age, fname)

The Index Selection Problem 5

* Your workload:

100000 queries 100 queries 100000 queries
sID sID Student
Student Student (?, w, ?)
name = ? age = 7

Which one(s) are useful?

A. Index on hame

B. Index on age
C. Index on name, age

D. Index on age, name

Basic Index Selection Guidelines

e Consider queries in workload in order of importance

* Consider relations accessed by query
* No point indexing other relations

» Look at WHERE clause for possible search key

* Try to choose indexes that speed up multiple queries

Summary

* Query Processing
* SQL Parser
* Logical Optimization
* Physical Optimization
* Query Execution

* Indexing
* Data Storage
* Index motivation
* Index Selection

Acknowledge

* Some lecture slides were copied from or inspired by the
following course materials

* “W4111: Introduction to databases” by Eugene Wu at
Columbia University

e “CSE344: Introduction to Data Management” by Dan Suciu at
University of Washington

 “CMPT354: Database System |” by John Edgar at Simon Fraser
University

* “CS186: Introduction to Database Systems” by Joe Hellerstein
at UC Berkeley

e “CS145: Introduction to Databases” by Peter Bailis at Stanford

e “CS 348: Introduction to Database Management” by Grant
Weddell at University of Waterloo

