CMPT 354:
Database System |

Lecture 5. Relational Algebra

What have we learned

* Lec 1. Database History
e Lec 2. Relational Model
* Lec 3-4. SQL

Why Relational Algebra matter?

* An essential topic to understand how query
processing and optimization work

 What happened when an SQL is issued to a database?

* Help you master the kills to quickly learn a new
qguery language
* How to quickly learn XML QL and MangoDB QL?

Relational Query Languages

* Query languages allow the manipulation and retrieval
of data from a database

* Traditionally: QL != programming language
* Doesn’t need to be Turing complete
* Not designed for computation
» Supports easy, efficient access to large databases

* Recent Years:
e Everything interesting involves a large data set
* QLs are quite powerful for expressing algorithms at scale

Formal Query Languages

e Relational Algebra
* Procedural query language
* used to represent execution plans

* Relational Calculus
* Non-procedural (declarative) query language
* Describe what you want, rather than how to compute it
* Foundation for SQL

Results of a Query

e Query is a function over

Q() =

* The schema of the result relation is determined by the
input relation and the query

* Because the result of a query is a relation, it can be used
as input to another query

Q) =

Sets v.s. Bags

e Sets: {a, b, c}, {a, d, e, f}, {}, ...
* Bags: {a, a, b, c}, {b, b, b, b, b}, ...

 Relational Algebra has two flavors:

* Set semantics = standard Relational Algebra
* Bag semantics = extended Relational Algebra

* DB systems implement bag semantics (Why?)

Sets v.s. Bags

e Sets: {a, b, c}, {a, d, e, f}, {}, ...
* Bags: {a, a, b, c}, {b, b, b, b, b}, ...

 Relational Algebra has two flavors:

* Set semantics = standard Relational Algebra
* Bag semantics = extended Relational Algebra

* DB systems implement bag semantics (Why?)

Relational Algebra Operators

* Core 5 operators
* Selection (o)
* Projection (7)
e Union (U)
* Set Difference (-)
* Cross product (X)

* Additional operators
 Rename (p)
* join (><)
* Intersect (")

Selection

* The selection operator, ¢ (sigma), specifies the
rows to be retained from the input relation

* A selection has the form: o, ,4i.n(relation), where
condition is a Boolean expression

e Terms in the condition are comparisons between two
fields (or a field and a constant)

* Using one of the comparison operators: <, <, =, #, =, >
e Terms may be connected by A (and), or v (or),
* Terms may be negated using — (not)

Selection Example

Opirth < 1981(CUSt0mer)

sin firstName lastName birth

Customer 333 |Cordelia Chase 1980
sin firstName lastName birth 444 |Rupert Giles 1955
111 [Buffy Summers [1981
222 |Xander Harris 1981
333 |Cordelia Chase 1980
444 |Rupert Giles 1955
sin firstName lastName birth
555 [Dawn Summers 1984
111 (Buffy Summers |1981
555 [Dawn Summers 1984

GastName = ”Summers”(Cu stome r)

Projection

* The projection operator, &t (pi), specifies the
columns to be retained from the input relation

* A selection has the form: 7 ,,...(relation)

* Where columns is a comma separated list of column
names

 The list contains the names of the columns to be
retained in the result relation

Projection Example

7-cfirstName,/a:~;t‘Nc/me(CuStorn € I’)
firstName lastName

Customer Buffy Summers
sin firstName lastName birth Xander Harris
111 |Buffy Summers |1981 Cordelia | Chase
222 |Xander Harris 1981 Rupert Giles
333 |Cordelia [Chase 1980 Dawn Summers
444 |Rupert Giles 1955
555 [Dawn Summers |1984 m
1981
<1\\\‘______~#_~,,,ﬂ,,,,///f«ff"* 1980
Tiren(Customer) 1955
1984

Selection and Projection Notes

e Selection and projection eliminate duplicates
e Since relations are sets

* Both operations require one input relation

e The schema of the result of a selection is the same as
the schema of the input relation

* The schema of the result of a projection contains just
those attributes in the projection list

Composing Selection and Projection

7-csin,firstName(Gbirt‘h <1982 A lastName = ”Summers”(CUStomer))

Customer /\ intermediate relation

sin firstName lastName birth sin firstName lastName birth

111 |Buffy Summers 1981 111 Buffy Summers 1981
222 |Xander Harris 1981
333 |Cordelia Chase 1980
444 |Rupert Giles 1955
555 |Dawn Summers |1984

v

| 111 | Buffy |

Composing Selection and Projection

T pirth (Obirth < 1981 (Customer))

(////’—-h‘—\“\\\\\\\\\\\\\\\\\\\\\\\\\\\’1980

Customer 1955
sin firstName IlastName birth
111 [Buffy Summers [1981
222 (Xander Harris 1981
333 |Cordelia Chase 1980
444 |Rupert Giles 1955
555 |Dawn Summers |1984

<L\\\~____-——--//’*“””’””’/”/"1980

Chpirth < 1981 (T piren (Customer)) 1955

Commutative property

* For example:
* X+Y=Yy+X
" XFy=y*x

* Does it hold for projection and selection?

TE columns(Gcondition(R)) = T condition (Gcolumns(R)) ?

 What about

chirstName(Gbirth <1981 (CUStomer))?

Commutative property

chirstName (Gbirth < 1981(CUStomer))

E e -
Cordelia

Customer

Rupert

sin firstName IlastName birth

111 [Buffy Summers [1981
222 (Xander Harris 1981
333 |Cordelia Chase 1980
444 |Rupert Giles 1955
555 |Dawn Summers | 1984

Cordelia
Rupert

T firstName (Cpirth < 1981 (T firstName, birth (Customer)))

Set Operations Review

A={1, 3,6} B={1, 2,5, 6}
Union (V) AUB=BUA AuB={1,2,3,5,6}
Intersection(N) ANB=BNnA AN B={1, 6}
Set Difference(-) A—B#B-A A — B ={3} B—A={2, 5}

19

Union Compatible Relations

A op B = Rresult

* whereop=U, N, or -

* A and B must be union compatible

 Same number of fields
* Field i in each schema have the same type

Union Compatible Relations

Intersection of the Employee and Customer relations

Customer Employee

sin firstName IlastName birth | sin firstName IlastName salary
111 | Buffy Summers [1981| | 208 | Clark Kent 80000.55
222 | Xander Harris 1981 | 111 | Buffy Summers | 22000.78
333 | Cordelia Chase 1980 | | 412 | Carol Danvers 64000.00
444 | Rupert Giles 1955

The two relations are not union compatible as
555 | Dawn Summers |[1984 | birth is a DATE and salary is a REAL

We can carry out preliminary operations to make the relations union compatible

Tcsin, firstName, /astName(Custome r) M Tcsin, firstName, /astName(Em P | oye e)

Union Compatible Relations

A op B = Rresult

* whereop=U, N, or -

* A and B must be union compatible

 Same number of fields
* Field I in each schema have the same type

e Result schema borrowed from A

A(age int) U B(num int) = R .. (age int)

Union

A
111 | Buffy Summers 111 | Buffy Summers
222 | Xander Harris 222 | Xander Harris
333 | Cordelia Chase 333 | Cordelia Chase
444 | Rupert Giles 444 | Rupert Giles
555 | Dawn Summers 555 | Dawn Summers
8 AUB 208 | Clark Kent
412 | Carol Danvers
208 | Clark Kent
111 | Buffy Summers
412 | Carol Danvers

Set Difference

sin firstName IlastName

Buffy Summers
222 | Xander Harris
333 | Cordelia Chase
444 | Rupert Giles
555 | Dawn Summers

sin firstName IlastName

Clark Kent
111 | Buffy Summers
412 | Carol Danvers

A—-B

B-A

firstName lastName

Xander Harris
333 | Cordelia Chase
444 | Rupert Giles
555 | Dawn Summers

sin firstName IlastName

Clark

Kent

412

Carol

Danvers

Note on Set Difference

* Notice that most operators are monotonic
* Increasing size of inputs = outputs grow

* Set Difference is non-monotonic
* Example: A—B
* Increasing the size of B could decrease output size

* Set difference is blocking:
* For A — B, must wait for all B tuples before any results

Intersection

A

sin firstName

111 | Buffy Summers
222 | Xander Harris
333 | Cordelia Chase
444 | Rupert Giles
555 | Dawn Summers

B

sin firstName

208 | Clark Kent
111 | Buffy Summers
412 | Carol Danvers

ANB

sin firstName

111 | Buffy

lastName

Summers

Note on Intersect

*ANB=R

result

>
l*V/////'

* Can we express using other operators?
e ANB="

Note on Intersect

*ANB=R

result

>
i%%i

* Can we express using other operators?
* ANB=A- (A-B)

N

Cartesian Product

A(ay, ..., ;) X B(a,,41 » «+»@m) = Rresyit(@1 5 @)

* Each row of A paired with each row of B
e Result schema concats A and B’s fields

 Names are inherited if possible (i.e. if not duplicated)

 If two field names are the same (i.e., a naming conflict occurs) and
the affected columns are referred to by position

* If R contains m records, and S contains n records, the result
relation will contain m * n records

Cartesian Product Example

OastName = "Summers ”(CUStomer) Account

sin firstName IlastName birth acc type balance sin

111 [Buffy Summers |1981 01 | CHQ 2101.76 | 111

335 |Dawn Summers | 1984 02 |SAV | 11300.03 | 333
03 [CHQ | 20621.00 | 444

ClastName = ”Summers"(CUStomer) x Account

firstName lastName birth acc type balance

111 |Buffy Summers [1981| 01 [CHQ 2101.76| 111
111 |Buffy Summers [1981| 02 |SAV 11300.03| 333
111 |Buffy Summers [1981| 03 [CHQ 20621.00| 444
555 |Dawn Summers [1984| 01 [CHQ 2101.76| 111
555 |Dawn Summers [1984| 02 |SAV 11300.03| 333
555 |Dawn Summers [1984| 03 [CHQ 20621.00| 444

Renaming

* It is sometimes useful to assign names to the
results of a relational algebra query

* The rename operator, p (rho)
* ps(R) renames a relation
* Psaz.a2,..an)\R) renames a relation and its attributes
* Prew/old(R) renames specified attributes

R
firstName lastName birth acc type balance
111 |Buffy Summers |1981| 01 [CHQ 2101.76| 111
111 |Buffy Summers |1981| 02 |SAV | 11300.03| 333 p _ _ (R)
111 |Buffy Summers |1981| 03 |CHQ | 20621.00| 444 sid1/1, sid2/8
555 |Dawn Summers [1984| 01 |CHQ 2101.76| 111
555 |Dawn Summers 1984 | 02 |SAV 11300.03| 333
555 |Dawn Summers |1984| 03 [CHQ 20621.00| 444

Account = {accNumber, type, balance, branchName}

Largest Balance

* Find the account with the largest balance; return
accNumber

1. Find accounts which are less than some other
account

cyaccounl‘.balance < d.balance (ACCOU nt x pd (ACCOU nt))

2. Use set difference to find the account with the
largest balance

T accNumber (ACCOU nt) -
Tcaccount.achumber(Gaccount.balance < d.balance (ACCOU nt x pd (ACCOU nt)))

32

Relational Algebra Operators

* Core 5 operations
* Selection (o)
* Projection ()
e Union (U)
e Set Difference (-)
e Cross product (X)

* Additional operations
 Rename (p)

* Intersect (")
* Join (<)

Relational Algebra Exercises

e Student (sID, lastName, firstName, cgpa)
e 101, Jordan, Michael, 3.8

e Offering (oID, dept, cNum, term, instructor)
e abc, CMPT, 354, Fall 2018, Jiannan

* Took (sID, olD, grade)
101, abc, 95

1. sID of all students who have earned some grade over 80 and some grade below 50.

TCSID (Ggmde > 80 (TOOk)) n TCSID(Ggmde <50 (TOOk))

Relational Algebra Exercises

e Student (sID, lastName, firstName, cgpa)
e 101, Jordan, Michael, 3.8

e Offering (oID, dept, cNum, term, instructor)
e abc, CMPT, 354, Fall 2018, Jiannan

* Took (sID, olD, grade)
101, abc, 95

2. Student number of all students who have taken CMPT 354

(GOffering.olD = Took.olD A dept = ‘CMPT’ A cNum = 354 (Offerl ng x TOOk))

(Inner) Joins

* Motivation
* Simplify some queries that require a Cartesian product

R S=m,(cg(R X S))
RD<g S = 0g(R X S)

R[><]eS=09(R X S)

* Join condition 6 consists only of equalities

Natural Join

* There is often a natural way to join two relations
* Join based on common attributes
* Eliminate duplicate common attributes from the result

Customer Employee

sin firstName IlastName birth sin firstName lastName salary
111 | Buffy Summers |[1981 208 | Clark Kent 80000.55
222 | Xander Harris 1981 111 | Buffy Summers | 22000.78
333 | Cordelia Chase 1980 396 | Dawn Allen 41000.21
444 | Rupert Giles 1955

Customer 4 Employee
sin firstName lastName birth salary

111 |Buffy Summers [1981| 22000.78

Natural Join

RS

 Meaning: R ™ S=my(og (R % S))
* Where:

* Selection oy checks equality of all common attributes
(i.e., attributes with same names)

* Projection m, eliminates duplicate common attributes

* The natural join of two tables with no fields in
common is the Cartesian product

* Not the empty set

Natural Join Example

R S
A B C D A B C E
111 | Buffy Summers |1981 208 | Clark Kent 80000.55
222 | Xander Harris 1981 111 | Buffy | Summers 22000.78
333 | Cordelia Chase 1980| | 396 | Dawn | Allen 41000.21
444 | Rupert Giles 1955

R ™ S=Ts5cpe(OrasanrBsBARCs.c (R X S))

A

B

111 |Buffy

C

Summers

D

E

1981 | 22000.78

Theta Join

Rx,S= o4(RxS)

* Most general form
* © can be any condition

* No projection in this case!
* Result schema same as cross product

Theta Join Example

Customer Employee

sin firstName IlastName birth | sin firstName IlastName salary
111 | Buffy Summers [1981| | 208 | Clark Kent 80000.55
222 | Xander Harris 1981 | | 111 | Buffy Summers | 22000.78
333 | Cordelia Chase 1980 | | 412 | Carol Danvers 64000.00
444 | Rupert Giles 1955

555 | Dawn Summers |1984

Customer Mcomersin < Employee.sin EMployee

1 2 3 birth 5 6 7 salary

111 |Buffy Summers 1981 | 208 (Clark [Kent 80000.55

111 |Buffy Summers 1981 | 412 |(Carol |Danvers 64000.00

222 |Xander Harris 1981 | 412 |Carol |Danvers 64000.00

333 [Cordelia |Chase 1980 | 412 |Carol |[Danvers 64000.00

Equi-Joins

Rx,S= o4(RxS)

* A theta join where 6 is an equality predicate

Customer Employee

sin firstName IlastName birth sin firstName lastName salary
111 | Buffy Summers |[1981 208 | Clark Kent 80000.55
222 | Xander Harris 1981 111 | Buffy Summers | 22000.78
333 | Cordelia Chase 1980 396 | Dawn Allen 41000.21
444 | Rupert Giles 1955

Customer Mg omersin = Employee.sin EMployee

1 2 3 birth 5 6 salary

111 |Buffy Summers 1981 | 111 (Buffy |Summers | 22000.78

(Inner) Joins Summary

RD>< S=m, (0g(R X S))
Equality on all fields with same name inRand in S
Projection 1, drops all redundant attributes

RD<g S = 05 (R *S)
Join of R and S with a join condition 0
Cross-product followed by selection 0
No projection

R[><]eS=Ge(RXS)
* Join condition 6 consists only of equalities
* No projection

Relational Algebra Exercises

e Student (sID, lastName, firstName, cgpa)
e 101, Jordan, Michael, 3.8

* Course (dept, cNum, name, breadth)
* CMPT, 354, DB, True

e Offering (oID, dept, cNum, term, instructor)
e abc, CMPT, 354, Fall 2018, Jiannan

* Took (sID, olD, grade)
101, abc, 95

The names of all students who have passed a breadth course (grade >= 60 and breadth = True)

with Martin

TclastName, firstName (Gbreadth = True A grade > 60 A instructor = ‘Martin’ (StUdent ><1 Took <1 Offeri ng > Cou FSE))

Different Plans, Same Results

* Semantic equivalence: results are always the same

nname(ocNum=354 (R N S))

nname(ocNum=354(R) M S)

* Are they equivalent?
* Which one is more efficient?
e Can you make it even more efficient?

Other Operators

* There are additional relational algebra operators
* Usually used in the context of query optimization

* Duplicate elimination — 0
e Used to turn a bag into a set

* Aggregation operators
* e.g.sum, average
* Grouping —vy

* Used to partition tuples into groups
* Typically used with aggregation

Summary

* Relational Algebra (RA) operators

* Five core operators: selection, projection, cross-product,
union and set difference

* Additional operators are defined in terms of the core
operators: rename, intersection, join

* Theorem: SQL and RA can express exactly the same
class of queries

* Multiple RA queries can be equivalent
* Same semantics but difference performance
* Form basis for optimizations

Acknowledge

* Some lecture slides were copied from or inspired by the
following course materials

* “W4111: Introduction to databases” by Eugene Wu at
Columbia University

e “CSE344: Introduction to Data Management” by Dan Suciu at
University of Washington

 “CMPT354: Database System |” by John Edgar at Simon Fraser
University

* “CS186: Introduction to Database Systems” by Joe Hellerstein
at UC Berkeley

e “CS145: Introduction to Databases” by Peter Bailis at Stanford

e “CS 348: Introduction to Database Management” by Grant
Weddell at University of Waterloo

