
CMPT 354:
Database System I

Lecture 4. SQL Advanced

1

Announcements!

• A1 is due today

• A2 is released (due in 2 weeks)

2

Outline

• Joins
• Inner Join
• Outer Join

• Aggregation Queries
• Simple Aggregations
• Group By
• Having

• Discussion

3

Joins: Recap

4

SELECT name, course
FROM Student, Enroll
WHERE name = stdName

name gpa
Mary 3.8
Tom 3.6
Jack 3.7

Student Enroll
stdName course
Mary 354
Tom 354
Tom 454
Bob 354

name gpa
Mary 354
Tom 354
Tom 454

Two equivalent ways to write
joins

5

SELECT name, course
FROM Student, Enroll
WHERE name = stdName

SELECT name, course
FROM Student JOIN Enroll ON

name = stdName

Join Types

6

SELECT name, course
FROM Student INNER JOIN Enroll ON

name = stdName

SELECT name, course
FROM Student FULL OUTER JOIN Enroll ON

name = stdName

SELECT name
FROM Student LEFT OUTER JOIN Enroll ON

name = stdName

SELECT name
FROM Student RIGHT OUTER JOIN Enroll ON

name = stdName

Join Types

7

SELECT name, course
FROM Student INNER JOIN Enroll ON

name = stdName

SELECT name, course
FROM Student FULL OUTER JOIN Enroll ON

name = stdName

SELECT name
FROM Student RIGHT OUTER JOIN Enroll ON

name = stdName

SELECT name
FROM Student LEFT OUTER JOIN Enroll ON

name = stdName

Left Join

8

SELECT name, course
FROM Student JOIN Enroll ON

name = stdName

name gpa
Mary 3.8
Tom 3.6
Jack 3.7

Student Enroll
stdName course
Mary 354
Tom 354
Tom 454
Bob 354

We want to include all students no matter
whether they enroll a course or not. How?

LEFTJOIN Enroll ON

9

SELECT name, course
FROM Student LEFT JOIN Enroll ON

name = stdName

name gpa
Mary 3.8
Tom 3.6
Jack 3.7

Student Enroll
stdName course
Mary 354
Tom 354
Tom 454
Bob 354

name course

Output

Mary 354
Tom 354

Tom 454

Jack NULL

10

SELECT name, course
FROM Student RIGHT JOIN Enroll ON

name = stdName

name gpa
Mary 3.8
Tom 3.6
Jack 3.7

Student Enroll
stdName course
Mary 354
Tom 354
Tom 454
Bob 354

name course

Output

Mary 354
Tom 354

Tom 454

NULL 354

11

SELECT name, course
FROM Enroll FULL JOIN Student ON

name = stdName

name gpa
Mary 3.8
Tom 3.6
Jack 3.7

StudentEnroll
stdName course
Mary 354
Tom 354
Tom 454
Bob 354

name course

Output

Mary 354
Tom 354

Tom 454

Jack NULL

NULL 354

Outer Join

• Left outer join:
• Include tuples from tableA even if no match

• Right outer join:
• Include tuples from tableB even if no match

• Full outer join:
• Include tuples from both even if no match

12

TableA (LEFT/RIGHT/FULL) JOIN TableB

Exercise - 1

13

SELECT name, course
FROM Student LEFT JOIN Enroll ON

name = stdName AND course = 354

name gpa
Mary 3.8
Tom 3.6
Jack 3.7

Student Enroll
stdName course
Mary 354
Tom 354
Tom 454
Bob 354

name course
Mary 354
Tom 354

Jack NULL

name course
Mary 354
Tom 354

(A) (B)

Exercise - 2

14

SELECT name, course
FROM Student LEFT JOIN Enroll ON

name = stdName
WHERE course = 354

name gpa
Mary 3.8
Tom 3.6
Jack 3.7

Student Enroll
stdName course
Mary 354
Tom 354
Tom 454
Bob 354

name course
Mary 354
Tom 354

Jack NULL

name course
Mary 354
Tom 354

(A) (B)

Outline

• Joins
• Inner Join
• Outer Join

• Aggregation Queries
• Simple Aggregations
• Group By
• Having

• Discussion

15

Simple Aggregation

16

SELECT agg(column)
FROM <table name>
WHERE <conditions>

agg = COUNT, SUM, AVG, MAX, MIN, etc.

Except count, all aggregations apply to a single attribute

Examples

17

name gender gpa
Bob M 3
Mike M 3
Alice F 3
Mary F 4
Tom M 4

SELECT COUNT(*) FROM Student

SELECT SUM(gpa) FROM Student

SELECT AVG(gpa) FROM Student

SELECT MIN(gpa) FROM Student

SELECT MAX(gpa) FROM Student

5

17

3

3.4

4

Examples

18

name gender gpa
Bob M 3
Mike M 3
Alice F 3
Mary F 4
Tom M 4

SELECT COUNT(DISTINCT gpa) FROM Student

SELECT SUM(DISTINCT gpa) FROM Student

SELECT AVG(gpa) FROM Student
WHERE gender = ‘F’

2

3.5

7

The need for Group By

19

• How to get AVG(gpa) for each gender?

• How to get AVG(gpa) for each age?

SELECT AVG(gpa) FROM Student WHERE gender = ‘M’

SELECT AVG(gpa) FROM Student WHERE gender = ‘F’

SELECT AVG(gpa) FROM Student WHERE age = 18

SELECT AVG(gpa) FROM Student WHERE age = 19

SELECT AVG(gpa) FROM Student WHERE age = 20
...

Grouping and Aggregation

20

SELECT agg(column)
FROM <table name>
WHERE <conditions>
GROUP BY <columns>

• How to get AVG(gpa) for each gender?

• How to get AVG(gpa) for each age?

SELECT AVG(gpa) FROM Student GROUP BY gender

SELECT AVG(gpa) FROM Student GROUP BY age

Grouping and Aggregation

• How is the following query processed?

• Semantics of the query
1. Compute the FROM and WHERE clauses
2. Group by the attributes in the GROUP BY
3. Compute the SELECT clause: grouped attributes and

aggregates
21

SELECT gender, AVG(gpa)
FROM Student
WHERE gpa > 2.5
GROUP BY gender

1. Compute the FROM and WHERE clauses

22

SELECT gender, AVG(gpa)
FROM Student
WHERE gpa > 2.5
GROUP BY gender

name gender gpa
Bob M 2
Mike M 3
Alice F 3
Mary F 4
Tom M 3

name gender gpa
Mike M 3
Alice F 3
Mary F 4
Tom M 3

2. Group by the attributes in the GROUP BY

23

SELECT gender, AVG(gpa)
FROM Student
WHERE gpa > 2.5
GROUP BY gender

gender name gpa

M
Mike 3
Tom 3

F
Alice 3
Mary 4

name gender gpa
Mike M 3
Alice F 3
Mary F 4
Tom M 3

3. Compute the SELECT clause: grouped
attributes and aggregates

24

gender name gpa

M
Mike 3
Tom 3

F
Alice 3
Mary 4

SELECT gender, AVG(gpa)
FROM Student
WHERE gpa > 2.5
GROUP BY gender

gender AVG(gpa)

M 3
F 3.5

Exercise: Empty Group

25

name gender gpa
Bob M 3
Mike M 3
Alice F 4
Mary F 4
Tom M 3

SELECT gender, AVG(gpa)
FROM Student
WHERE gpa > 3.5
GROUP BY gender

gender AVG(gpa)
F 4

gender AVG(gpa)
F 4
M NULL

VS

(A) (B)

Exercise: Empty Group

26

name gender gpa
Bob M 3
Mike M 3
Alice F 4
Mary F 4
Tom M 3

SELECT gender, AVG(gpa)
FROM Student
WHERE gpa > 3.5
GROUP BY gender

name gender gpa
Alice F 4
Mary F 4

Exercise: Empty Group

27

name gender gpa
Bob M 3
Mike M 3
Alice F 4
Mary F 4
Tom M 3

name gender gpa
Alice F 4
Mary F 4

gender name gpa

F
Alice 4
Mary 4

SELECT gender, AVG(gpa)
FROM Student
WHERE gpa > 3.5
GROUP BY gender

Exercise: Empty Group

28

name gender gpa
Bob M 3
Mike M 3
Alice F 4
Mary F 4
Tom M 3

SELECT gender, AVG(gpa)
FROM Student
WHERE gpa > 3.5
GROUP BY gender

name gender gpa
Alice F 4
Mary F 4

gender name gpa

F
Alice 4
Mary 4

gender AVG(gpa)
F 4

Exercise: Invalid Selection

29

name gender gpa
Bob M 3
Mike M 3
Alice F 4
Mary F 4
Tom M 3

SELECT gender, AVG(gpa), name
FROM Student
WHERE gpa > 3.5
GROUP BY gender

gender AVG(gpa） name
F 4 Alice

gender AVG(gpa) name
F 4 MaryVS

(A) (B)

Exercise: Invalid Selection

30

name gender gpa
Bob M 3
Mike M 3
Alice F 4
Mary F 4
Tom M 3

SELECT gender, AVG(gpa), name
FROM Student
WHERE gpa > 3.5
GROUP BY gender

name gender gpa
Alice F 4
Mary F 4

Exercise: Invalid Selection

31

name gender gpa
Bob M 3
Mike M 3
Alice F 4
Mary F 4
Tom M 3

SELECT gender, AVG(gpa), name
FROM Student
WHERE gpa > 3.5
GROUP BY gender

name gender gpa
Alice F 4
Mary F 4

gender name gpa

F
Alice 4
Mary 4

Exercise: Invalid Selection

32

name gender gpa
Bob M 3
Mike M 3
Alice F 4
Mary F 4
Tom M 3

SELECT gender, AVG(gpa), name
FROM Student
WHERE gpa > 3.5
GROUP BY gender

name gender gpa
Alice F 4
Mary F 4

gender name gpa

F
Alice 4
Mary 4

gender AVG(gpa) name
F 4 ???

Everything in SELECT must be either a
GROUP-BY attribute, or an aggregate

HAVING Clause

• Specify which groups you are interested in

33

SELECT agg(column)
FROM <table name>
WHERE <conditions>
GROUP BY <columns>
HAVING <columns>

HAVING Clause

34

SELECT AVG(gpa), gender
FROM Student
WHERE gpa > 2.5
GROUP BY gender
HAVING COUNT(*) > 10

• Same query as before, except that we require each
group has more than 10 students

HAVING clause contains conditions on aggregates.

Order of Evaluation

• Create the cross product of the tables in the FROM clause
• Remove rows not meeting the WHERE condition
• Divide records into groups by the GROUP BY clause
• Remove groups not meeting the HAVING clause
• Create one row for each group and remove columns not in

the SELECT clause

35

SELECT S
FROM R1,…,Rn
WHERE C1
GROUP BY a1,…,ak
HAVING C2

Exercise

36

name gender gpa
Bob M 3
Mike M 3
Alice F 4
Mary F 4
Tom M 3

SELECT gender, AVG(gpa)
FROM StudentInfo
WHERE gpa > 2.5
GROUP BY gender
HAVING COUNT(*) > 2

SELECT gender, AVG(gpa)
FROM StudentInfo
WHERE gpa > 2.5
GROUP BY gender
HAVING SUM(gpa) < 9

StudentInfo

gender AVG(gpa)

M 3

gender AVG(gpa)

F 4

gender AVG(gpa)

M 3
F 4

(A) (B) (C)

Imagine you are a data scientist
at a Bank

37

Computer Science vs. Data Science

What When Who Goal

Computer
Science

1950- Software Engineer Write software to make computers work

Plan à Design à Develop à Test à Deploy à Maintain

What When Who Goal

Data
Science

2010- Data Scientist Extract insights from data to answer questions

Collect à Clean à Integrate à Analyze à Visualize à Communicate

38

Discussion

39

Q1. Who is the richest customer?
Q2. Which customers have ONLY one account?

Discussion

40

Q3. How many employees does each branch have?
Q4. Which branch has a higher pay?

Outline

• Joins
• Inner Join
• Outer Join
• Self Join

• Aggregation Queries
• Simple Aggregations
• Group By
• Having

• Subqueries
• In the FROM clause
• In the WHERE clause

41

Subqueries
• A subquery is a SQL query nested inside a larger query
• Such inner-outer queries are called nested queries

42

SELECT C.customerID, C.birthDate, C.income
FROM Customer C
WHERE C.customerID IN

(
SELECT O.customerID
FROM Account A, Owns A
WHERE A.accNumber = O.accNumber

AND A.branchName = 'Lonsdale’
)

Inner Query

Outer Query

Subqueries
• Subqueries may appear in
• A FROM clause,
• A WHERE clause, and
• A HAVING clause

43

SELECT <columns>
FROM <table name>
WHERE <conditions>
GROUP BY <columns>
HAVING <columns>

Subqueries in FROM
• Sometimes we need to compute an intermediate

table only to use it later in a SELECT-FROM-WHERE
• Who is the richest customer?

44

SELECT firstName, lastName, MAX(sumBalance)
FROM (SELECT firstName, lastName, sum(balance) AS sumBalance

FROM Customer C, Account A, Owns O
WHERE C.customerID = O.customerID

AND O.accNumber = A.accNumber
GROUP BY C.customerID)

Subqueries in FROM
• Sometimes we need to compute an intermediate

table only to use it later in a SELECT-FROM-WHERE
• Which customers have a total balance equal to 0?

45

SELECT firstName, lastName, sumBalance
FROM (SELECT firstName, lastName, sum(balance) AS sumBalance

FROM Customer C, Account A, Owns O
WHERE C.customerID = O.customerID

AND O.accNumber = A.accNumber
GROUP BY C.customerID) AS T

WHERE T. sumBalance = 0

Subqueries in FROM
• Sometimes we need to compute an intermediate

table only to use it later in a SELECT-FROM-WHERE
• Which customers have a total balance equal to 0?

46

SELECT firstName, lastName, sum(balance) AS sumBalance
FROM Customer C, Account A, Owns O
WHERE C.customerID = O.customerID AND O.accNumber = A.accNumber
GROUP BY C.customerID
HAVING sumBalance = 0

Rule of thumb: avoid nested queries when possible

Subqueries in WHERE
• Subqueries return a single constant
• >, <, =, <>, >=, <=

• Find the customerIDs of customers whose income is
larger than avg(income)

47

SELECT C1.customerID
FROM Customer C1
WHERE C1.income > (SELECT avg(C2.income)

FROM Customer C2)

Subqueries in WHERE
• Subqueries return a relation
• IN
• NOT IN
• EXISTS
• NOT EXISTS
• ANY
• ALL

48

Accounts IN Burnaby
• Find the customerIDs of customers with an account at

the Burnaby branch

SELECT C.customerID
FROM Customer C
WHERE C.customerID IN (SELECT O.customerID

FROM Account A, Owns O
WHERE A.accNumber = O.accNumber

AND A.branchName = ’Burnaby’)

49

Accounts NOT IN Burnaby
• Find the customerIDs of customers who do not have an

account at the Burnaby branch

50

SELECT C.customerID
FROM Customer C
WHERE C.customerID NOT IN (SELECT O.customerID

FROM Account A, Owns O
WHERE A.accNumber = O.accNumber

AND A.branchName = ’Burnaby’)

Uncorrelated Queries

• The query shown previously contains an uncorrelated,
or independent, sub-query
• The sub-query does not contain references to attributes of

the outer query

• An independent sub-query can be evaluated before
evaluation of the outer query
• And needs to be evaluated only once

• The sub-query result can be checked for each row of the outer query
• The cost is the cost for performing the sub-query (once) and

the cost of scanning the outer relation

51

EXISTing BurnabyAccounts
• Find the customerIDs of customers with an account at

the Burnaby branch

SELECT C.customerID
FROM Customer C
WHERE EXISTS (SELECT *

FROM Account A, Owns O
WHERE C.customerID = O.customerID

AND A.accNumber = O.accNumber
AND A.branchName = ’Burnaby’)

EXISTS and NOT EXISTS test whether the associated
sub-query is non-empty or empty

52

Correlated Queries

• The previous query contained a correlated sub-
query
• With references to attributes of the outer query

• … WHERE C.customerID = O.customerID …
• It is evaluated once for each row in the outer query

• i.e. for each row in the Customer table

• Correlated queries are often inefficient

53

EXISTing BurnabyAccounts
• Find the customerIDs of customers with an account at

the Burnaby branch

SELECT DISTINCT C.customerID
FROM Customer C, Account A, Owns O
WHERE C.customerID = A.accNumber

AND A.accNumber = O.customerID
AND A.branchName = ’Burnaby’

54

Have an account in all branches
• Find the customerIDs of customers who have an

account in all branches

55

SQ1 – A list of all
branch names

SQ2 – A list of
branch names that
a customer has an
account at

EXCEPT

If the customer has an account at every branch then
this result is empty

• Putting it all together we have

SELECT C.customerID
FROM Customer C
WHERE NOT EXISTS ((SELECT B.branchName

FROM Branch B)
EXCEPT

(SELECT A.branchName
FROM Account A, Owns O
WHERE O.customerID = C.customerID

AND O.accNumber = A.accNumber))
56

Have an account in all branches

ANYone Richer Than Bruce
• Find the customerIDs of customers who earn more

than some customer called Bruce

SELECT C.customerID
FROM Customer C
WHERE C.income > ANY

(SELECT Bruce.income
FROM Customer Bruce
WHERE Bruce.firstName = 'Bruce')

Customers in the result table must have incomes greater
than at least one of the rows in the sub-query result 57

Richer Than ALL the Bruces
• Find the customerIDs of customers who earn more

than all customer called Bruce
SELECT C.customerID
FROM Customer C
WHERE C.income > ALL

(SELECT Bruce.income
FROM Customer Bruce
WHERE Bruce.firstName = 'Bruce')

If there were no customers called Bruce this query would
return all customers 58

Summary

• Selection
• Projection
• Set Operators (UNION, INTERSECT, EXCEPT)
• Joins (INNER, OUTER)
• Aggregation
• Group By
• Having
• Order By
• Distinct
• Subqueries

59SQL operators can be composed just like building LEGO buildings

Acknowledge
• Some lecture slides were copied from or inspired by the

following course materials
• “W4111: Introduction to databases” by Eugene Wu at

Columbia University
• “CSE344: Introduction to Data Management” by Dan Suciu at

University of Washington
• “CMPT354: Database System I” by John Edgar at Simon Fraser

University
• “CS186: Introduction to Database Systems” by Joe Hellerstein

at UC Berkeley
• “CS145: Introduction to Databases” by Peter Bailis at Stanford
• “CS 348: Introduction to Database Management” by Grant

Weddell at University of Waterloo
60

