
CMPT 354:
Database System I

Lecture 7. Basics of Query Optimization

1

Why should you care?

2

https://databricks.com/glossary/catalyst-optimizer

https://sigmod.org/sigmod-awards/people/goetz-graefe-2017-sigmod-edgar-f-codd-innovations-award/

https://databricks.com/glossary/catalyst-optimizer
https://sigmod.org/sigmod-awards/people/goetz-graefe-2017-sigmod-edgar-f-codd-innovations-award/

Query Processing Steps

3

SQL Parser

Logical Optimization

Query Execution

Physical Optimization

SQL query

Disk

Query
optimization

IBM System R Optimizer

• First implementation of a query optimizer

• Make people believe that the DBMS can beat a
human developer

• A lot of the concepts are still used today

4

How to build a query optimization?

1. Plan Space
• Figure out all possible query plans

2. Cost Estimation
• Estimate the cost of each plan

3. Search Algorithm
• Find the best plan

5

CPU + I/O

don’t go for best plan, go
for least worst plan

Too large, must
be pruned

Outline

• Recap of Logical Optimization
• Selection Pushdown
• Projection Pushdown

• Physical Optimization
• Join Algorithms
• Selectivity Estimation

6

Π!,#

R(A,B) S(B,C)

T(C,D)

sA<10

Π!,#(𝜎!$%& 𝑇 ⋈ 𝑅 ⋈ 𝑆)

SELECT R.A,S.D
FROM R,S,T
WHERE R.B = S.B
AND S.C = T.C
AND R.A < 10;

R(A,B) S(B,C) T(C,D)

Translating to RA

7

Π!,#

R(A,B) S(B,C)

T(C,D)

sA<10

Π!,#(𝜎!$%& 𝑇 ⋈ 𝑅 ⋈ 𝑆)

Optimizing RA Plan

Push down
selection on A so
it occurs earlier

SELECT R.A,S.D
FROM R,S,T
WHERE R.B = S.B
AND S.C = T.C
AND R.A < 10;

R(A,B) S(B,C) T(C,D)

8

Π!,#

R(A,B)

S(B,C)

T(C,D)

Π!,# 𝑇 ⋈ 𝜎!$%&(𝑅) ⋈ 𝑆

Optimizing RA Plan

Push down
selection on A so
it occurs earlier

sA<10

SELECT R.A,S.D
FROM R,S,T
WHERE R.B = S.B
AND S.C = T.C
AND R.A < 10;

R(A,B) S(B,C) T(C,D)

9

Π!,#

R(A,B)

S(B,C)

T(C,D)

Π!,# 𝑇 ⋈ 𝜎!$%&(𝑅) ⋈ 𝑆

Push down
projection so it
occurs earlier

sA<10

Optimizing RA Plan

SELECT R.A,S.D
FROM R,S,T
WHERE R.B = S.B
AND S.C = T.C
AND R.A < 10;

R(A,B) S(B,C) T(C,D)

10

Π!,#

R(A,B)

S(B,C)

T(C,D)

Π!,# 𝑇 ⋈ Π!,' 𝜎!$%&(𝑅) ⋈ 𝑆

We eliminate B
earlier!

sA<10

Π!,$

Optimizing RA Plan

SELECT R.A,S.D
FROM R,S,T
WHERE R.B = S.B
AND S.C = T.C
AND R.A < 10;

R(A,B) S(B,C) T(C,D)

11

Outline

• Recap of Logical Optimization
• Selection Pushdown
• Projection Pushdown

• Physical Optimization
• Join Algorithms
• Histogram

12

Join Algorithms

• Nested loop Join

• Hash Join

• Sort-merge join

13

sname uID

Mike 0

Joe 1

Alice 0

Marry 1

Bob 0

Tim 2

uID uname

0 SFU

1 UBC

2 UT

Student University

Student ⋈ University

14

Dive into
Nested Loop Joins

Notes

• Cost = I/O + CPU + Network

• “IO aware” algorithms
• We will focus on I/O

• Given a relation R, let:
• T(R) = # of tuples in R
• P(R) = # of pages in R

10 CMPT 345 SP 2018 Jiannan

20 CMPT 454 FA 2018 Martin
Page 1

30 … … … …

40 …
Page 2

50

60
Page 3

70

80
Page 4

15

Nested Loop Join (NLJ)

Compute R ⋈ 𝑆 𝑜𝑛 𝐴:
for r in R:

for s in S:
if r[A] == s[A]:

yield (r,s)

16

Nested Loop Join (NLJ)

Compute R ⋈ 𝑆 𝑜𝑛 𝐴:
for r in R:

for s in S:
if r[A] == s[A]:

yield (r,s)

P(R)

1. Loop over the tuples in R

Note that our IO cost is based
on the number of pages
loaded, not the number of
tuples!

Cost:

17

Nested Loop Join (NLJ)

Compute R ⋈ 𝑆 𝑜𝑛 𝐴:
for r in R:

for s in S:
if r[A] == s[A]:

yield (r,s)

P(R) + T(R)*P(S)

Have to read all of S from disk for every tuple in R!

1. Loop over the tuples in R

2. For every tuple in R, loop
over all the tuples in S

Cost:

18

Nested Loop Join (NLJ)

Compute R ⋈ 𝑆 𝑜𝑛 𝐴:
for r in R:

for s in S:
if r[A] == s[A]:

yield (r,s)

P(R) + T(R)*P(S)

Note that NLJ can handle things other than equality
constraints… just check in the if statement!

1. Loop over the tuples in R

2. For every tuple in R, loop
over all the tuples in S

3. Check against join
conditions

Cost:

19

Nested Loop Join (NLJ)

Compute R ⋈ 𝑆 𝑜𝑛 𝐴:
for r in R:

for s in S:
if r[A] == s[A]:

yield (r,s)

P(R) + T(R)*P(S) + OUT

1. Loop over the tuples in R

2. For every tuple in R, loop
over all the tuples in S

3. Check against join conditions

4. Write out (to page, then
when page full, to disk)

Cost:

Is this the same as a cross product?

20

Nested Loop Join (NLJ)

Compute R ⋈ 𝑆 𝑜𝑛 𝐴:
for r in R:

for s in S:
if r[A] == s[A]:

yield (r,s)

P(R) + T(R)*P(S) + OUT

What if R (“outer”) and S
(“inner”) switched?

Cost:

P(S) + T(S)*P(R) + OUT

Outer vs. inner selection could make a huge difference-
DBMS needs to know which relation is smaller!

21

IO-Aware Approach

22

Block Nested Loop Join (BNLJ)

Compute R ⋈ 𝑆 𝑜𝑛 𝐴:
for each B-1 pages pr of R:
for page ps of S:
for each tuple r in pr:
for each tuple s in ps:
if r[A] == s[A]:
yield (r,s)

P(𝑅)

Given B+1 pages of memory

1. Load in B-1 pages of R at a
time (leaving 1 page each
free for S & output)

Cost:

Note: There could be some
speedup here due to the fact
that we’re reading in multiple
pages sequentially however
we’ll ignore this here!

23

Block Nested Loop Join (BNLJ)

Compute R ⋈ 𝑆 𝑜𝑛 𝐴:
for each B-1 pages pr of R:
for page ps of S:
for each tuple r in pr:
for each tuple s in ps:
if r[A] == s[A]:
yield (r,s)

P 𝑅 +
𝑃 𝑅
𝐵 − 1

𝑃(𝑆)

Given B+1 pages of memory

Note: Faster to iterate over the
smaller relation first!

1. Load in B-1 pages of R at a
time (leaving 1 page each
free for S & output)

2. For each (B-1)-page segment
of R, load each page of S

Cost:

24

Block Nested Loop Join (BNLJ)

Compute R ⋈ 𝑆 𝑜𝑛 𝐴:
for each B-1 pages pr of R:
for page ps of S:
for each tuple r in pr:
for each tuple s in ps:
if r[A] == s[A]:
yield (r,s)

Given B+1 pages of memory

1. Load in B-1 pages of R at a
time (leaving 1 page each
free for S & output)

2. For each (B-1)-page segment
of R, load each page of S

3. Check against the join
conditions

BNLJ can also handle non-equality constraints

Cost:

P 𝑅 +
𝑃 𝑅
𝐵 − 1

𝑃(𝑆)

25

Block Nested Loop Join (BNLJ)

Compute R ⋈ 𝑆 𝑜𝑛 𝐴:
for each B-1 pages pr of R:
for page ps of S:
for each tuple r in pr:
for each tuple s in ps:
if r[A] == s[A]:
yield (r,s)

P 𝑅 + % &
'()

𝑃(𝑆) + OUT

Given B+1 pages of memory

1. Load in B-1 pages of R at a
time (leaving 1 page each
free for S & output)

2. For each (B-1)-page segment
of R, load each page of S

3. Check against the join
conditions

4. Write out

Cost:

26

BNLJ vs. NLJ: Benefits of IO Aware

• NLJ
• Read all of S from disk for every page of R

• BNLJ
• Read all of S from disk for every (B-1)-page segment of R

P 𝑅 + ! "
#$% 𝑃(𝑆) + OUTP(R) + T(R)*P(S) + OUT

NLJ BNLJ

BNLJ is faster by roughly (#$%)((")
!(")

!

27

BNLJ vs. NLJ: Benefits of IO Aware
• Example:
• R: 500 pages
• S: 1000 pages
• 100 tuples / page
• We have 12 pages of memory (B = 11)

• NLJ: Cost = 500 + 50,000*1000 = 50 Million IOs

• BNLJ: Cost = 500 + .&&∗%&&&
%&

= 50 Thousand IOs

A very real difference from a small
change in the algorithm!

Ignoring OUT here…

28

Outline

• Recap of Logical Optimization
• Selection Pushdown
• Projection Pushdown

• Physical Optimization
• Join Algorithms
• Histogram

29

Motivation
• Imagine you build an index on name, and then run

the following queries

• Imagine you build an index on age, and then run
the following queries

30

SELECT sID
FROM Student
WHERE name = “Mike”

SELECT sID
FROM Student
WHERE 10 < age < 15

Will query optimizer use the index?
Yes!

Will query optimizer use the index?
It depends.

How does query optimizer figure these out?

Why Selectivity Estimation?

Multiple research groups consistently reported that learned
cardinality estimators show very impressive results

31

“The root of all evil, the Achilles Heel of query optimization, is the
estimation of the size of intermediate results, known as cardinalities.”

Guy Lohman, IBMDB2 (40 years’ experience)2014

2018 - 2021

Histograms

• A histogram is a set of value ranges (“buckets”) and
the frequencies of values in those buckets occurring

• How to choose the buckets?
• Equiwidth & Equidepth

• Turns out high-frequency values are very important

32

0

5

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Values

Frequency

How do we
compute how
many values
between 8 and
10?
(Yes, it’s obvious)

Problem: counts take up too much space!

Example

33

Full vs. Uniform Counts

0

2

4

6

8

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

How much space
do the full counts
(bucket_size=1)
take?

How much space
do the uniform
counts
(bucket_size=ALL)
take?

34

Fundamental Tradeoffs

• Want high resolution (like the full counts)

• Want low space (like uniform)

• Histograms are a compromise!

So how do we compute the “bucket” sizes?

35

Equi-width

0

5

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

All buckets roughly the same width

36

Equidepth

0
2
4
6
8

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

All buckets contain roughly the same
number of items (total frequency)

37

Histograms

• Simple, intuitive and popular

• Parameters: # of buckets and type

• Can extend to many attributes (multidimensional)

38

SELECT sID
FROM Student
WHERE 10 < age < 15 AND gpa > 3.5

Maintaining Histograms

• Histograms require that we update them!
• Typically, you must run/schedule a command to update

statistics on the database
• Out of date histograms can be terrible!

• There is research work on self-tuning histograms
and the use of query feedback
• Oracle 11g

39

Nasty example

0

5

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1. we insert many tuples with value > 16
2. we do not update the histogram
3. we ask for values > 20?

40

Compressed Histograms

• One popular approach:
1. Store the most frequent values and their counts

explicitly
2. Keep an equiwidth or equidepth one for the rest of the

values

People continue to try all manner of fanciness here
wavelets, graphical models, entropy models,…

41

Summary

• Logical Optimization
• SQL -- > RA à RA Tree
• Selection Pushdown
• Projection Pushdown

• Physical Optimization
• Nested Loop Join / Hash Join / Sort-Merge Join
• I/O Aware Algorithm
• Histogram

42

Acknowledge
• Some lecture slides were copied from or inspired by the

following course materials
• “W4111: Introduction to databases” by Eugene Wu at

Columbia University
• “CSE344: Introduction to Data Management” by Dan Suciu at

University of Washington
• “CMPT354: Database System I” by John Edgar at Simon Fraser

University
• “CS186: Introduction to Database Systems” by Joe Hellerstein

at UC Berkeley
• “CS145: Introduction to Databases” by Peter Bailis at Stanford
• “CS 348: Introduction to Database Management” by Grant

Weddell at University of Waterloo
43

