CMPT 354:
Database System |

Lecture 10. Application Programming

Why this lecture

* DB designer: establishes schema

* DB administrator: tunes systems and keeps whole
things running

* Data scientist: manipulates data to extract insights
* Data engineer: builds a data-processing pipeline

@pplication developer: writes progr@
uery and modify a database

Outline

e Database Programming

* Application Architecture

Programming Environment

FREE MUSIC

9. Musify - Free
Music Downloa...
Music

8. Stick Hero
Games

Cget |~
oo |)

[+] -
Get
In-App Purchases

Program

3.F 5. YouTube
Social Networking Soda Saga Photo & Video
Buopatal= Bupsate =
Foet -
In-App Purchases
ebCN
10. Skype for 11. eBay 12. Spotify Music
iPhone Lifestyle Music
Sociz = ol
Dov App Purch

4V

4 @) DR §- X &

(C++, Java,
Python, Ruby)

DBMS

Many Database API options

* Fully embed into language (embedded SQL)

e Low-level library with core database calls (DB API)

* Object-relational mapping (ORM)
* Ruby on rails, django, etc
* define database-backed classes
* magically maps between database rows & objects
* magic is a double edged sword

Embedded SQL

* Extend host language (CPP) with SQL syntax

0 {
EXEC SQL INCLUDE SQLCA:
EXEC SQL BEGIN DECLARE SECTION;

OrderlD;

CustlID; . .
SalesPerson[10] Declaring Variables
Status[6]

EXEC SQL END DECLARE SECTION;

, &OrderlD);

EXEC SQL SELECT CustID, SalesPerson, Status Embedded
FROM Orders
WHERE OrderID = :OrderlD SQL Query
INTO :CustID, :SalesPerson, :Status;

, CustID);
, SalesPerson);
, Status);

Embedded SQL

CPP + embedded SQL

4 Hard to maintain
| Preprocessor | « What if SQL evolves?
‘1, * What if Compiler evolves?
CPP + DB library calls
| CPP Compiler |<— DBMS library
Executable

{
[~ oems |

Many Database API options

* Fully embed into language (embedded SQL)

* Low-level library with core database calls (DB API)

* Object-relational mapping (ORM)

* Ruby on rails, django, Hibernate, sqlalchemy, etc
* define database-backed classes
* magically maps between database rows & objects
* magic is a double edged sword

What does a library need to do?

* Single interface to possibly multiple DBMS engines
* Connect to a database

* Map objects between host language and DBMS

* Manage query results

Ads j

; F | DBMs If j
rogram Library Users

API calls Connection

ODBC and JDBC

« ODBC (Open DataBase Connectivity)

) ODBC was originally developed by Microsoft and Simba Technologies

‘WIKIPEDI A
The Free Encyclopedia

» JDBC (Java DataBase Connectivity)

* Sun developed as set of Java interfaces
e javax.sql.*

10

Connections

* Create a connection
* Allocate resources for the connection

* Relatively expensive to set up, libraries often cache
connections for future use

conn = connect(sfu.db)

Should close connections when done! Otherwise resource leak.

11

Query Execution

* Challenges
* Type Mismatch
 What is the return type of execute()?
* How to pass data between DBMS and host language?

Type Mismatch

» SQL standard defines mappings between SQL and
several languages

SQL types C types Python types

Cursor

e SQL relations and results are sets of records

* What is the type of foo?

e Cursor over the Result Set
* similar to an iterator interface

* Note: relations are unordered!

e Cursors have no ordering guarantees
e Use ORDER BY to ensure an ordering

student|

cursor

Program

student|

student?

student3

DBMS

student4

student5

student6

student?/

student8

student9

> |

cf1 |r-|nn1' I n

student|

student?2

student3

student4

student2

cursor

student5

student6

student?

student8

student9

Program DBMS

L d . aIN

Cursor

e Cursor similar to an iterator
e cursor = conn.execute(“SELECT * FROM student”)

e Cursor methods

* fetchone()
 fetchall()

Cursor

e Cursor similar to an iterator

conn = sqglite3.connect('sfu.db')
cursor = conn.execute("select * from student")

for record in cursor.fetchall():
print record

conn.close()

(u'Mary', 3.8)
(u'Tom', 3.6)
(u'Jack', 3.7)

18

SQL Injection!!

symbol = RHAT’ OR True --
SELECT * FROM stocks WHERE symbol = 'RHAT' OR True --"

ire Foundation [US] | https://docs.python.org/2/library/sqglite3.htn Y g
Never ado this irnsecure.
symbol RHA'T
c.execute("SELECT * FROM stocks WHERE symbol : " % symbol)
Do this 1nsteaa
t ("RHAT',)
c.execute(SELECT * FROM stocks WHERE symbol=?", t)
print c.fetchone() 1

SELECT * FROM stocks WHERE symbol = 'RHAT" OR True --'

19

Exercise

1 import sqglite3

@conn: database connection

all the students whose name is @name

2 conn = sqglite3.connect('sfu.db')
1 def search(name, conn):

2 "o

3 Input:

4 @name: student name
5

6 Output:

7 @records:

g "o

9 # REPLACE WITH YOUR CODE
1 name = 'Mary'

2 search(name, conn)

[(u'Mary', 3.8)]

20

Outline

e Database Programming

* Application Architecture

Architectures

* Single tier
 How things used to be ...

e TWoO tier
i CIient—server architecture

* Three tier (and multi-tier)
e Used for many web systems
* Very scalable

Single Tier Architecture

 Historically, data intensive applications ran on

a single tier which contained
* The DBMS,

* Application logic and business rules, and

* User interface

Two-Tier Architecture

* Client/ server architecture

* The server implements the business logic and data management

* Separate presentation from the rest of the application

Client

Application
Logic

N network
v

DBMS
e

Client

Presentation Layer

e Responsible for handling the user's interaction with
the middle tier

* One application may have multiple versions that
correspond to different interfaces
* Web browsers, mobile phones, ...

 Style sheets can assist in controlling versions

Three-Tier Architecture

* Separate presentation from the rest of the application
* Separate the application logic from the data management

Client
[iii‘iiii# network network
Data)
Management Middle Layer Client
Layer Presentation

Layer

Business logic Layer

* The middle layer is responsible for running the
business logic of the application which controls
 What data is required before an action is performed
* The control flow of multi-stage actions
* Access to the database layer

* Multi-stage actions performed by the middle tier may
require database access

* But will not usually make permanent changes until the end
of the process

e e.g. adding items to a shopping basket in an Internet shopping site

Data Management Layer

* The data management tier contains one, or more
databases

* Which may be running on different DBMSs

* Data needs to be exchanged between the middle tier
and the database servers
* This task is not required if a single data source is used but,

* May be required if multiple data sources are to be
integrated

XML is a language which can be used as a data exchange
format between database servers and the middle tier

Example: Airline reservations

e Consider the three tiers in a system for airline
reservations

e Database System
* Airline info, available seats, customer info, etc.

* Application Server
* Logic to make reservations, cancel reservations, add new
airlines, etc.
* Client Program

* Log in different users, display forms and human-readable
output

Example: Course Enroliment

e Student enrollment system tiers

e Database System
e Student information, course information, instructor
information, course availability, pre-requisites, etc.
* Application Server
* Logic to add a course, drop a course, create a new
course, etc.
* Client Program

e Log in different users (students, staff, faculty), display
forms and human-readable output

3 Tier Architecture and the Web

* In the domain of web applications three tier
architecture usually refers to
* Web server
* Application server
* Database server

4 <
I 2 Z
Y 2 ~ ~
<«—HTTP—> | :l <« HTTP » 3] <«—SQL—»

Browser Web Server Application
Server

S

31

Summary

e Database Programming
* Embedded SQL
* DB API

* Application Architecture
* Three Tier Architecture

Acknowledge

* Some lecture slides were copied from or inspired by the
following course materials

* “W4111: Introduction to databases” by Eugene Wu at
Columbia University

e “CSE344: Introduction to Data Management” by Dan Suciu at
University of Washington

 “CMPT354: Database System |” by John Edgar at Simon Fraser
University

* “CS186: Introduction to Database Systems” by Joe Hellerstein
at UC Berkeley

e “CS145: Introduction to Databases” by Peter Bailis at Stanford

e “CS 348: Introduction to Database Management” by Grant
Weddell at University of Waterloo

