CMPT 354: Database System I

Lecture 1. Course Introduction

Outline

• Course admin and set up (Who and How)

Motivation for studying DBs (Why)

• Overview of course topics (What)

Staff

- Instructor:
 - Prof. Jiannan Wang (jnwang@sfu.ca)
 - Office hours: Wednesday 11:30-12:30 (noon), Zoom
- TA:
 - Chunyu Chen (<u>cca387@sfu.ca</u>)
 - Obumneme Dukor (<u>osd@sfu.ca</u>)
 - Danrui Qi (<u>dqi@sfu.ca</u>)
 - Office hours: TBD

Course Format

- Lectures
 - Mon 10:30 12:20 (Zoom → SWH10041)
 - Wed 10:30 11:20 (Zoom → EDB7618)
 - PLEASE ATTEND!
- Five homework assignments
- Midterm and final

Grading

• Homework: 5 * 6% = 30%

• Midterm: 25%

• Final: 45%

• This is all subject to change

Communications

- Web page
 - Link: https://sfu-db.github.io/cmpt354
 - Course information, lecture notes, and assignments
- Piazza
 - Sign up: <u>https://piazza.com/sfu.ca/spring2022/cmpt354</u>
 - The place to ask course-related questions
 - Log in today and enable notifications
- Class mailing list
 - You are automatically subscribed
 - Low traffic, only important announcements
- Google form
 - Link: https://goo.gl/forms/UH0nvxKGAFNMkCtr1
 - Provide anonymous feedback to improve courses

Textbooks

- [GUW] Database Systems: The Complete Book (2nd Edition)
 - Hector Garcia-Molina,
 - Jeffrey Ullman,
 - Jennifer Widom
- [RG] Database Management Systems (optional)
 - Raghu Ramakrishnan
 - Johannes Gehrke

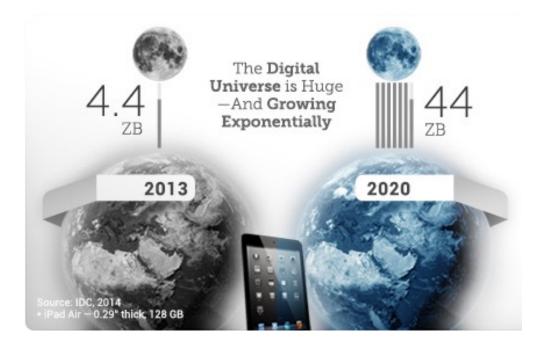
Five Assignments

- A1. Basic SQL Queries
- A2. Advanced SQL Queries
- A3. Relational Algebra & Indexing
- A4. Schema Design
- A5. Transactional Application

Policy

Don't be late

- You have up to 4 late days
- No more than 2 on any one assignment
- Once it is used up, 20% per day for each late day

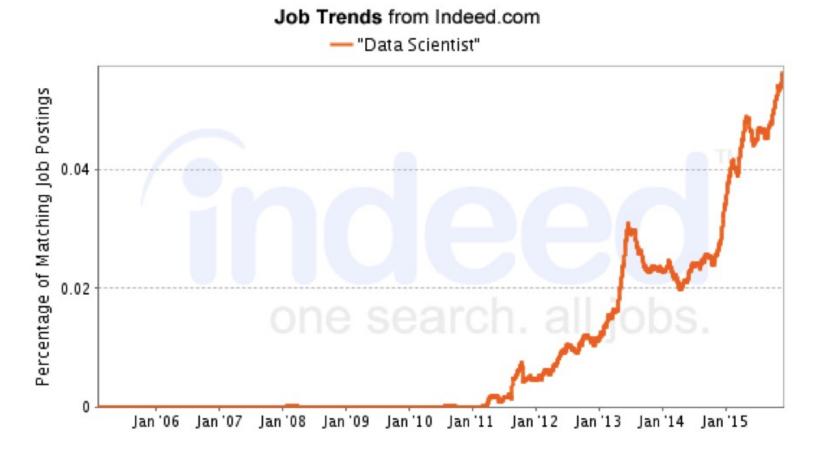

Don't Cheat

- We will do plagiarism check at the end of semester
- If you got caught, your final mark would be deducted by 40%

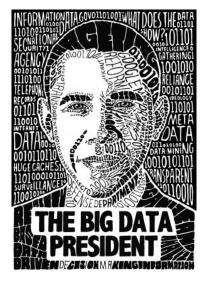
Outline

- Course admin and set up (Who and How)
- Motivation for studying this course (Why)
- Overview of course topics (What)

Trend 1: Data grows exponentially



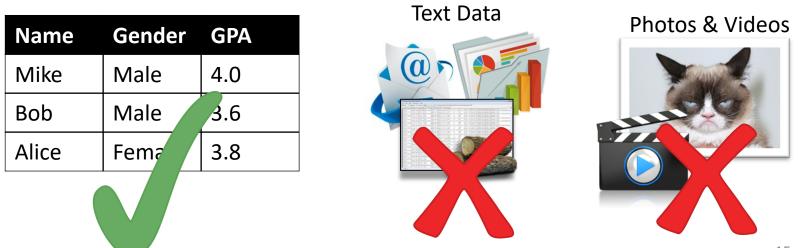
1 ZB = 1, 000, 000, 000, 000 GB


Why Trend 1?

- Human Generated Data
 - Social Media
 - Camera/Microphones
 - Activity Trackers
 - ...
- Machine Generated Data
 - Software Logs
 - Smart Home
 - Self-driving Car
 - •

Trend 2: Data skills are in increasingly high demand

Why Trend 2?



EDUID IN TONY HEY, STEWART TANSLEY, AND KRISTIN TOLLE

everything Data is at the center of many things

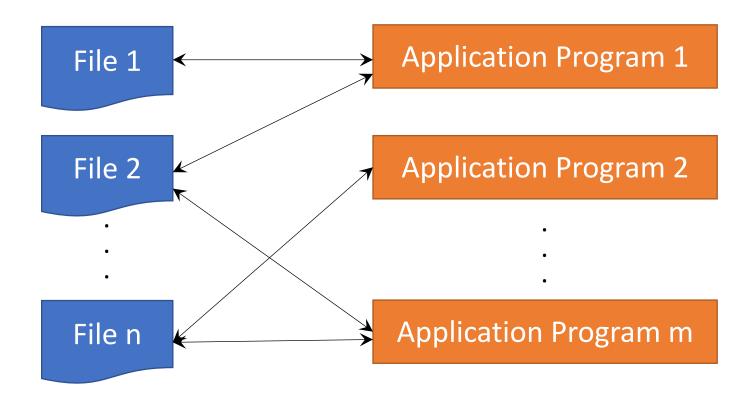
Database

- What is a database?
 - A collection of files that store related data
- We will mainly focus on relational databases (i.e., data is stored in tables)

Databases in Real Life

- Examples
 - <u>Amazon</u>: Online Bookstore
 - <u>SFU</u>: Course Management System
 - <u>RBC</u>: Banking System
 - <u>Air Canada</u>: Airline Reservation System
- Answer two questions
 - What data do they need?
 - What applications do they need to build?

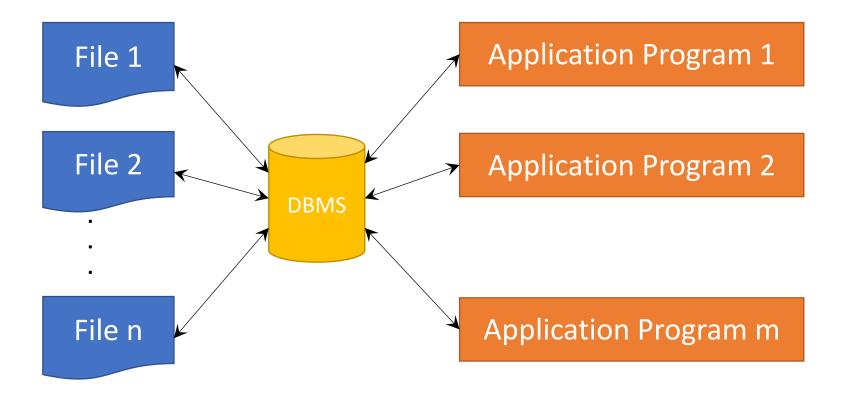
Amazon: Online Bookstore


- Database
 - Data about books, customers, orders, etc.
 - Data about sessions (clicks, pages, searches)
- Applications
 - Book Search System
 - Recommender System
 - Payment System
 - Order System
 -

Database Management Systems (DBMSs)

- What is a DBMS?
 - A piece of software designed to store and manage databases
- Examples
 - <u>Commercial:</u> Oracle, IBM DB2, Microsoft SQL Server
 - <u>Open source:</u> MySQL (Sun/Oracle), PostgreSQL, SQLite

Data Storage without DBMS


- Data would be collected in many different files and
- Used by many application programs

What happens if

- Several programs need to access and modify the same record at the same time?
- An attribute is added to one of the files?
- We need to repeatedly access a single record out of millions of records?
- We need to retrieve data stored in multiple files?
- The system crashes while one of the application programs is running?

Data Storage with DBMS

DBMS Functions

- All access to data is centralized and managed by the DBMS
- Usage advantages
 - Efficient access
 - Data integrity and security
 - Concurrent access and concurrency control
 - Crash recovery
- Design and implementation advantages
 - Logical data independence
 - Physical data independence
 - Reduced application development time

Current Market

- Relational database still anchor the software industry
 - Elephants: Oracle, IBM, Microsoft, Teradata, EMC, ...
 - Open source: MySQL, PostgreSQL
 - Emerging variants: In-memory, Column-oriented
- Open source "NoSQL" is growing
 - Analytics: Hadoop MapReduce, Spark
 - Key-value Stores: MongoDB, Cassandra, Couchbase
- Cloud services are expanding quickly
 - Amazon Redshift/Aurora, Microsoft Cosmos DB, Google BigQuery, Snowflake

Course Objectives

- 1. Master skills to query a database
- 2. Master skills to **design a** *database*
- 3. Understand how a DBMS works

Who needs this course?

- DB designer: establishes schema
- **DB application developer:** writes programs that query and modify a database
- **DB administrator:** tunes systems and keeps whole things running
- Data scientist: manipulates data to extract insights
- Data engineer: builds a data-processing pipeline

Outline

• Course admin and set up (Who and How)

Motivation for studying DBs (Why)

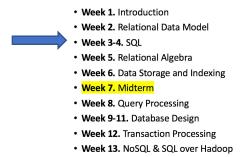
Overview of course topics (What)

CMPT 354 Topics

- Week 1. Introduction
- Week 2. Relational Data Model
- Week 3-4. SQL
- Week 5. Relational Algebra
- Week 6. Data Storage and Indexing
- Week 7. Midterm
- Week 8. Query Processing
- Week 9-11. Database Design
- Week 12. Transaction Processing
- Week 13. NoSQL & SQL over Hadoop & Cloud Databases
- Week 15. Final Exam

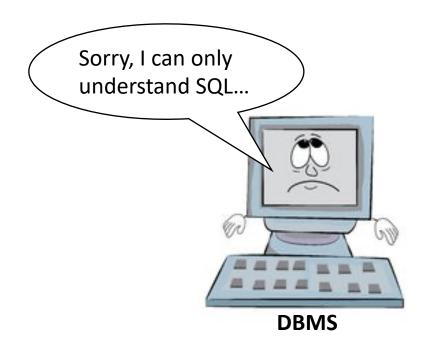
CMPT 354 and 454

• CMPT 354


- How to query a database
- How to design a database
- How DBMSs work (basics)
- CMPT 454
 - How DBMSs work (advance)
 - How to implement DBMSs

- Week 1. Introduction
 Week 2. Relational Data Model
 Week 3-4. SQL
 Week 5. Relational Algebra
 Week 6. Data Storage and Indexing
 Week 7. Midterm
 Week 8. Query Processing
 Week 9-11. Database Design
 Week 12. Transaction Processing
 - Week 13. NoSQL & SQL over Hadoop

Week 2. Relational Model


- Ted Codd won a Turing Award by proposing the relational model
- 4 out of 5 top database engines are relational databases

Rank				
Jan 2022	Dec 2021	Jan 2021	DBMS	Database Model
1.	1.	1.	Oracle 🕂	Relational, Multi-model 🛐
2.	2.	2.	MySQL 🚹	Relational, Multi-model 📷
3.	3.	3.	Microsoft SQL Server 🞛	Relational, Multi-model 🛐
4.	4.	4.	PostgreSQL 🖪 🗭	Relational, Multi-model 👔
5.	5.	5.	MongoDB 🗄	Document, Multi-model 👔

• Week 3-4. Structured Query Language (SQL)

- Enable you to communicate with a DBMS
- Declarative language (i.e., say what you want not how to do it)

Find names of all students with GPA > 3.5

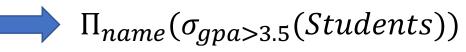
SELECT name

FROM Student

WHERE GPA > 3.5

• Week 5. Relational Algebra

- SQL: What you want
- <u>Relational Algebra:</u> How to get it


Find names of all students with GPA > 3.5

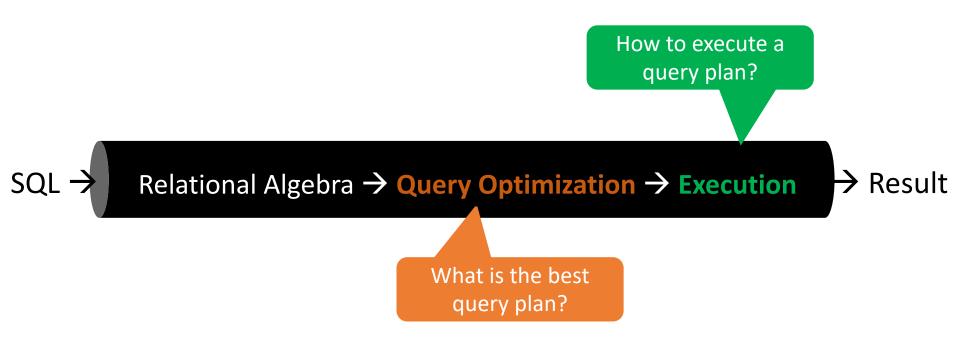
SELECT name

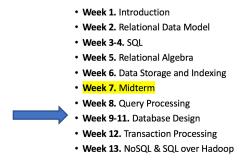
FROM Student

WHERE gpa > 3.5

- Week 1. Introduction
 Week 2. Relational Data Model
 Week 3-4. SQL
 Week 5. Relational Algebra
 Week 6. Data Storage and Indexing
 Week 7. Midterm
 Week 8. Query Processing
 Week 9-11. Database Design
 Week 12. Transaction Processing
 - Week 13. NoSQL & SQL over Hadoop

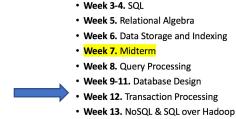
- Week 6. Storage and Indexing
 - My database application is too **slow** ... Why?
 - One of the queries is very **slow** ... Why?


Week 1. Introduction
Week 2. Relational Data Model


Week 5. Relational Algebra
Week 6. Data Storage and Indexing

• Week 3-4. SQL

Week 7. Midterm
Week 8. Query Processing
Week 9-11. Database Design
Week 12. Transaction Processing
Week 13. NoSQL & SQL over Hadoop


- Week 1. Introduction
 Week 2. Relational Data Model
 Week 3-4. SQL
 Week 5. Relational Algebra
 Week 6. Data Storage and Indexing
 Week 7. Midterm
 Week 8. Query Processing
 Week 9-11. Database Design
 Week 12. Transaction Processing
 Week 13. NoSQL & SQL over Hadoop
- Week 8. Query Optimization and Execution
 - Understand how an SQL query is processed

- Week 9-11. Database Design
 - How to design a database for an application (e.g. an iPhone APP)

\bigcirc		F	SODA	Þ		<pre>2</pre>
1. WhatsApp Messenger Social Networking Get •	2. Messenger Social Networking	3. Facebook Social Networking	4. Candy Crush Soda Saga Games Games In-App Purchases	5. YouTube Photo & Video	6. Instagram Photo & Video Update	7. Snapchat Photo & Video Qet
	FREE MUSIC	8	ebay		Y	iter NEWS
8. Stick Hero Games Get v In-App Purchases	9. Musify - Free Music Downloa Music Get • In-App Purchases	10. Skype for iPhone Social Networking Download • In-App Purchases	11. eBay Lifestyle Update	12. Spotify Music Music Get v In-App Purchases	13. Twitter Social Networking	14. ITV News News Get
Q			8			

Week 1. Introduction
Week 2. Relational Data Model

- Week 12. Transaction Processing
 - What if multiple users access the same data
 - What if your computer crashes

Your PC ran into a problem and needs to restart. We're just collecting some error info, and then we'll restart for you. (75% complete)

Week 13. NoSQL & Big Data & Cloud Databases

Hadoop is slowly eating conventional analytics

The components of the Hadoop ecosystem won't overthrow Teredata or IBM Netezza any time soon, but ultimately, the commodity solution almost always wins

🕑 🗗 💿 😳 😳 🕞

BUSINESS

Snowflake shares more than double. It's the biggest software IPO ever

By Paul R. La Monica, CNN Business

Updated 3:37 AM ET, Thu September 17, 2020

What to do next?

• Decide whether this is the right course for you

- Sign up Piazza and enable notifications
 - https://piazza.com/sfu.ca/spring2022/cmpt354

- Check out the course website
 - https://sfu-db.github.io/cmpt354/

Acknowledgements

- Some lecture slides were copied from or inspired by the following course materials
 - "W4111: Introduction to databases" by Eugene Wu at Columbia University
 - "CSE344: Introduction to Data Management" by Dan Suciu at University of Washington
 - "CMPT354: Database System I" by John Edgar at Simon Fraser University
 - "CS186: Introduction to Database Systems" by Joe Hellerstein at UC Berkeley
 - "CS145: Introduction to Databases" by Peter Bailis at Stanford
 - "CS 348: Introduction to Database Management" by Grant Weddell at University of Waterloo