
History of Database Systems

JIANNAN WANG

SIMON FRASER UNIVERSITY

1JIANNAN @ SFU

Database Systems in a Half Century
(1960s – 2020s)

JIANNAN @ SFU 2

When What

Early 1960 – Early 1970 The Navigational Database Empire

Mid 1970 – Mid 1980 The Database World War I

Mid 1980 – Early 2000 The Relational Database Empire

Mid 2000 – Now The Database World War II

References.
• https://en.wikipedia.org/wiki/Database#History
• What Goes Around Comes Around (Michael Stonebraker, Joe Hellerstein)
• 40 Years VLDB Panel

https://en.wikipedia.org/wiki/Database
https://sfu-db.github.io/dbsystems/Papers/datamodel.pdf
https://www.youtube.com/watch?v=wi4B-L7XdOQ

Data Model
1. How to organize data
2. How to access data

Navigational Data Model
1. Organize data into a multi-dimensional space (i.e., A space of records)
2. Access data by following pointers between records

Inventor: Charles Bachman
1. The 1973 ACM Turing Award
2. Turing Lecture: “The Programmer As Navigator”

JIANNAN @ SFU 3

The Navigational Database Empire
(Early1960 – Early 1970)

Representative Navigational Database Systems
◦ Integrated Data Store (IDS), 1964, GE
◦ Information Management System (IMS), 1966, IBM
◦ Integrated Database Management System (IDMS), 1973, Goodrich

CODASYL
◦ Short for “Conference/Committee on Data Systems Languages”
◦ Define navigational data model as standard database interface (1969)

JIANNAN @ SFU 4

The Navigational Database Empire
(Early1960 – Early 1970)

The Birth of Relational Model

JIANNAN @ SFU 5

Ted Codd
◦ Born in 1923
◦ PHD in 1965
◦ “A Relational Model of Data for Large Shared Data Banks” in 1970

Relational Model
◦ Organize data into a collection of relations
◦ Access data by a declarative language (i.e., tell me what you want, not how to find it)

Data
Independence

One Slide (Navigational Model)
◦ Led by Charles Bachman (1973 ACM Turing Award)
◦ Has built mature systems
◦ Dominated the database market

The other Slide (Relational Model)
◦ Led by Ted Codd (mathematical programmer, IBM)
◦ A theoretical paper with no system built
◦ Little support from IBM

JIANNAN @ SFU 6

The Database World War I:
Background

1. Which data model is better in theory?
(Mid 1970)

2. Which data model is better in practice?
(Late 1970 – Early 1980)

3. Which data model is better in business?
(Early 1980 – Mid 1980)

JIANNAN @ SFU 7

The Database World War I:
Three Big Campaigns

A debate at ACM SIGFIDET (precursor of SIGMOD)
1974
Navigational model is bad
◦ Data Organization: So complex
◦ Data Access: No declarative language

Relational model is bad
◦ Data Organization: A special case of navigational model
◦ Data Access: No system proof that declarative language is viable

JIANNAN @ SFU 8

The “Theory” Campaign

The Big Question
◦ Can a relational database system perform as good as a navigational system?

System prototypes
◦ Ingres at UC Berkeley (early and pioneering)
◦ System R at IBM (arguably got more stuff “right”)

The System R Team
◦ Query Optimization (Patricia P. Griffiths et al.)
◦ SQL (Donald D. Chamberlin et al.)
◦ Transaction (Jim Gray et al.)

JIANNAN @ SFU 9

The “Practice” Campaign

Commercialization of Relational Database Systems
Not as easy as we thought
Three reasons (required) that led relational database
systems to won
◦ The minicomputer revolution (1977)
◦ Competing products (e.g. IDMS) could not be ported to the minicomputer
◦ Relational front end was not added to navigational database systems

JIANNAN @ SFU 10

The “Business” Campaign

What Can We Learn?
Lesson 1.

Lesson 2.

Lesson 3.

JIANNAN @ SFU 11

The winning of theory The winning of practice

The winning of practice The winning of business

Everyone can get a chance to win

Parallel and distributed DBs (1980 – 1990)
◦ SystemR*, Distributed Ingres, Gamma, etc.

Objected-oriented DB (1980 – 1990)
◦ Objects: Data/Code Integration
◦ Extensibility: User-defined functions, User-defined data types

MySQL and PostgresSQL (1990s)
◦Widely used open-source relational DB systems

JIANNAN @ SFU 12

The Relational Database Empire
(Mid1980 – Early 2000)

Database Systems in a Half Century
(1960s – 2010s)

JIANNAN @ SFU 13

When What

Early 1960 – Early 1970 The Navigational Database Empire

Mid 1970 – Mid 1980 The Database World War I

Mid 1980 – Early 2000 The Relational Database Empire

Mid 2000 – Now The Database World War II

References.
• https://en.wikipedia.org/wiki/Database#History
• What Goes Around Comes Around (Michael Stonebraker, Joe Hellerstein)
• 40 Years VLDB Panel

https://en.wikipedia.org/wiki/Database
https://sfu-db.github.io/dbsystems/Papers/datamodel.pdf
https://www.youtube.com/watch?v=wi4B-L7XdOQ

Internet Boom (Early 2000)
◦Larger data volume that cannot be fit in a single machine
◦Faster data updates that cannot be handled by a single machine

Commercial distributed database systems are expensive L

Open-source database systems do not support distributed computing well L

JIANNAN @ SFU 14

The Database World War II:
Background

JIANNAN @ SFU 15

A

OLTP OLAP
OnLine Transaction Processing OnLine Analytical Processing

Workload
High-frequent Updates + Small Queries

Workload
Low-frequent Updates + Big Queries

1. Which is better for (distributed) OLTP:
NoSQL vs. Relational DBMS?

2. Which is better for (distributed) OLAP:
MapReduce vs. Relational DBMS?

JIANNAN @ SFU 16

The Database World War II:
Two Big Campaigns

1. Which is better for OLTP:
NoSQL vs. Relational DBMS?

2. Which is better for OLAP:
MapReduce vs. Relational DBMS?

JIANNAN @ SFU 17

The Database World War II:
Two Big Campaigns

What Happened To OLTP?

JIANNAN @ SFU 18

OldSQL (1970 – Now)

NoSQL (2000 – Now)

NewSQL (2010 – Now)

OldSQL (1970 – Now)
Traditional SQL vendors

Limitation 1: Not Scalable
Limitation 2: Pre-defined Schema

JIANNAN @ SFU 19

. . .

Still very big market!!!

The advent of Web 2.0

JIANNAN @ SFU 20

Read-only Web à Read-write Web

Highly Scalable
◦ Scale to1,000,000 users and 1000 servers

Highly Available
◦ Available 24 hours a day, 7 days a week

Highly Flexible
◦ Flexible schema and flexible data types

NoSQL Pioneers

JIANNAN @ SFU 21

Memcached [Fitzpatrick 2004]

◦ In-memory indexes can be highly scalable
BigTable [Chang et al. 2006]

◦Persistent record storage could be scaled to thousands of nodes
Dynamo [DeCandia et al. 2007]

◦Eventual consistency allows for higher availability and scalability

NoSQL Categories

JIANNAN @ SFU 22

DynamoDB, Riak, Redis, Membase, SimpleDB,
CouchBase, MongoDB, Hbase, Cassandra,
HyperTable, Neo4J, InfoGrid, GraphBase, …

NoSQL Data Model Example Systems

Key-value Stores Hash DynamoDB, Riak, Redis, Membase

Document Stores Json SimpleDB, CouchBase, MongoDB

Wide-column Stores Big Table Hbase, Cassandra, HyperTable

Graph Database Graph Neo4J, InfoGrid, GraphBase

NoSQL Limitations

JIANNAN @ SFU 23

Low-level Language
◦ Simple read/write database operators

Weak Consistency
◦ Eventual Consistency

Lack of Standardization
◦ 100+ NoSQL systems

NewSQL

JIANNAN @ SFU 24

Strong Consistency High Scalability+

90% query time spent on overhead

NewSQL Market

JIANNAN @ SFU 25

Limitations
◦ Scalable but not highly scalable
◦ Available but not highly available
◦ Flexible but not highly flexible

1. Which is better for OLTP:
NoSQL vs. Relational DBMS?

2. Which is better for OLAP:
MapReduce vs. Relational DBMS?

JIANNAN @ SFU 26

The Database World War II:
Two Big Campaigns

JIANNAN @ SFU 27

1 PB

How to store 1PB using 10,000 machines?

How to process 1PB using 10,000 machines?
MapReduce

GFS (HDFS)

= 100GB *10,000 Machines

Why MapReduce?
1. Fault Tolerant

(Your program will be OK when failures happen)

JIANNAN @ SFU 28

of
machines

Failure
Probability

1 0.1%
10 0.9%
100 9.5%
1000 63.2%
10,000 ???

Cost for
5 nodes

Failure
Probability

$100/day 0.1%
$1/day 10%

Reserved Instance

Spot Instance
99.9%

Why MapReduce?

2. Complex Analytics

JIANNAN @ SFU 29

MapReduce

3. Heterogeneous
Storage Systems

SQL Machine
Learning

Graph
Processing

The Great MapReduce Debate

(2008-2010)

JIANNAN @ SFU 30

http://tiny.cc/mapreduce-debate

http://tiny.cc/mapreduce-debate

MapReduce vs. SQL
SELECT Map(v)
FROM Table

JIANNAN @ SFU 31

Reduce (k, v_list)

Map (k, v)

SELECT Reduce(v)
FROM Table
GROUP BY k

MapReduce: A Major
Step Backwards

1. MapReduce is a step backwards in database access
2. MapReduce is a poor implementation
3. MapReduce is not novel
4. MapReduce is missing features
5. MapReduce is incompatible with the DBMS tools

JIANNAN @ SFU 32

Dewitt, D. and Stonebraker, M. MapReduce: A Major Step Backwards blogpost; January 17, 2008

Comments From The Other Side

JIANNAN @ SFU 33

vs.

MapReduce is a program model
rather than a database system

JIANNAN @ SFU 34

From Stonebraker et al. From Dean and Ghemawat

What They Agree On?
Advantages of MapReduce:

1. Fault Tolerant
2. Complex Analytics
3. Heterogeneous Storage Systems
4. No Data Loading Requirement

Both should Learn from Each Other

JIANNAN @ SFU 35

Who won the debate?

Nobody is writing
MapReduce code right now.

JIANNAN @ SFU 36

Many new systems (e.g., Spark,
HIVE) were built on MapReduce

Summary
Why Relational Database? (Mid 1970 – Now)

Why NoSQL? (Mid 2000 – Now)

Why MapReduce? (Mid 2000 – Now)

JIANNAN @ SFU 37

