CMPT 733 – Big Data Programming II

Visualization Principles for Data Science

Instructor Steven Bergner

Course website https://sfu-db.github.io/bigdata-cmpt733/

Source: Ch. 6.4 - 6.6 of <u>"Principles of Data Science"</u> by Lau, Gonzales, Nolan Slides adapted from Nolan, Dudoit, Perez, & Lau (CC BY-NC-ND 4.0)

Sources

Books

- Tamara Munzner "Visualization Analysis and Design", 2014
- Lau, Gonzalez, Nolan "Principles and Techniques of Data Science"

Slides

- Torsten Möller's Visualization course, Spring 2018
- UC Berkley Data 100 (Lau, Nolan, Dudoit, Perez)

Defining Visualization (Vis)

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

["Visualization Analysis and Design" by T. Munzner, 2014]

Why have a human in the loop?

- Not needed when automatic solution is trusted
- Good for ill-specified anlaysis problems
 - Common setting: "What questions can we ask?"

Why have a human in the loop?

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

Munzner, T. (2014)

- **Long-term use** Exploratory analysis of scientific data
 - Presentation of known results
- **Short-term use** For **developers** of automatic solutions:
 - Understand requirements for model development
 - Refine/debug and determine parameters
 - For **end users** of automatic solutions: verify, build trust

Analysis framework: four levels

- **Domain** situation: Who are the target users?
- Abstraction: Translate from specifics of domain to vocabulary of vis
- What is shown? Data abstraction
 - Don't just draw what you're given: transform to new
- Why is the user looking at it? Task abstraction
- How is it shown? Idiom (Vis technique)
 - Visual encoding idiom: How to draw
 - Interaction idiom: How to manipulate
- Algorithm: efficient computation

Resource limitations

Computational limits

Processing time and system memory

• **Human** limits

- Human attention and memory
- Understanding abstractions

• **Display** limits

- Pixels are precious
- Information density tradeoff: Info encoding vs unused whitespace

Understand Data, Task, and Encoding

Data Types

- Items and attributes as rows and columns of tables
- Position and time are special attributes
- Spatial data on grids makes computation easier

[T. Munzner, 2014]

→ Distribution

.ıllı. → Extremes

Network Data

→ Topology

→ Paths 关

Spatial Data

→ Shape

.ullu.

→ Search

	Target known	Target unknown
Location known	·.·· Lookup	• . Browse
Location unknown	⟨`ฺ⊙ੑ∙> Locate	⟨`⊙.> Explore

→ Dependency → Correlation → Similarity

Tasks

Actions

- Analyze
- Search
- Query

Targets

- Item & Attributes
- Topology & Shape

Visual Encoding - How?

- Marks
 - Geometric primitives
- Channels
 - Appearance of marks
 - Redundant coding of data with multiple channels is possible

Design Principles for Task Effective Visualization

Expressiveness principle

 Match channel characteristics and data type

Effectiveness principle

 Encode important attributes with higher ranked channels

Recap: Data Science Lifecycle

Related Processes

Big Data Journey

Business transformations as a company becomes more data-centric

Data Visualization Process

• Acquire, Parse, Filter, Mine, Represent, Refine, Interact [Ben Fry '07, Visualizing Data]

Data Visualization Pipeline

Analyse (Wrangling), Filter, Map to visual properties, Render geometry

Six Principles Today

- 1. Scale
- 2. Conditioning
- 3. Perception
- 4. Transformations
- 5. Context
- 6. Smoothing

Explored via three case studies.

Case 1: Planned Parenthood 2015 Hearing

- Investigation of federal funding of Planned Parenthood in light of fetal tissue controversy
- Congressman Chaffetz (R-UT) showed plot which originally appeared in a report by Americans United for Life (http://www.aul.org/)

Case 1: Planned Parenthood 2015 Hearing

- Procedures: cancer screenings and abortions
- How many data points are plotted?
- What is suspicious?
- What message is this plot trying to convey?

Case 2: Median Weekly Earnings

- Bureau of Labor Statistics surveys economics of labor
- <u>www.bls.gov</u> Web interface to a report generating app
- Plot of median weekly earnings for males and females by education level

2014 Median Weekly Earnings Full-Time Workers over 25 years old

Case 2: Median Weekly Earnings

- What comparisons are easily made with this plot?
- What comparisons are most interesting and important?

2014 Median Weekly Earnings Full-Time Workers over 25 years old

Men Women

Case 3: Cherry Blossom Runners

- 10 mi run in DC every April
- Results available from 1999-2019
- In 2019 over 17,000 runners
- Scatter plot of run time (min) against age (yrs)

Case 3: Cherry Blossom Runners

- 70,000+ points in the plot!
- What's the relationship between run time and age?

Principles of Scale

Scale

Keep consistent axis scales

- Don't change scale mid-axis
- Don't use two different scales for same axis
- How does this plot change perception of information?

Consider Scale of Data

- Scales of cancer screenings vs. abortions quite different
- Can plot percent change instead of raw counts

Reveal the Data

- Choose axis limits to fill plot
- If necessary, zoom into region with most of data
 - Can make separate plots for different regions

Time Scale

Principles of Conditioning

Conditioning

2014 Median Weekly Earnings Full-Time Workers over 25 years old

2014 Median Weekly Earnings Full-Time Workers over 25 years old

Use Conditioning To Aid Comparison

- Conditioning on male/female aligns points on x-axis
 - What does it reveal?
 - Why is this interesting?

Use Small Multiples To Aid Comparison

- Faceted plots that share scales are easy to compare
 - https://statmodeling.stat.columbia.edu/2009/07/15/hard_sell_for_b/

2000: State-level support (orange) or opposition (green) on school vouchers, relative to the national average of 45% support

Principles of Perception

Color Choices Matter!

Jet Colormap

Viridis Colormap

Use a Perceptually Uniform Color Map

- Perceptually uniform:
 - Changing data from 0.1 to 0.2 appears similar to change from 0.8 to 0.9.
 - Measure by running experiments on people!
- Jet, the old matplotlib default, was far from uniform!
- Now fixed in MPL: https://bids.github.io/colormap/ (Eric Firing et al.)
- Also, avoid red + green since many people are colorblind

Use a Perceptually Uniform Color Map

Jet Colormap

The colormap in its glory

700 600 500 400 300 200 100 Perceptual deltas (total: 260.56)

Viridis Colormap

The colormap in its glory

Use Color to Highlight Data Type

- Qualitative: Choose a qualitative scheme that makes it easy to distinguish between categories
- Quantitative: Choose a color scheme that implies magnitude.
- Plot on right has both!

Use Color to Highlight Data Type

- Does the data progress from low to high?
- Use a sequential scheme where light colors are for more extreme values

- 600

- 500

400

- 300

- 200

Use Color to Highlight Data Type

 Do both low and high value deserve equal emphasis? Use a diverging scheme where light colors represent middle values

```
sns.palplot(sns.color_palette("RdBu_r", 7))
```

Not All Marks Are Good!

- Accuracy of judgements depend on the type of mark
- Aligned lengths most accurate
- Color least accurate

Length (aligned) Accurate Length Slope Angle Area Color intensity Volume Generic Color hue

Lengths are Easy to Understand

- People can easily distinguish two different lengths
- E.g. Heights of bars in bar chart

Angles are Hard to Understand

- Avoid pie charts!
- Angle judgements are inaccurate
- In general, underestimate size of larger angle

Bar vs Pie Chart

Areas are Hard to Understand

- Avoid area charts!
- Area judgements are inaccurate
- In general, underestimate size of larger area

African Countries by GDP

Areas are Hard to Understand

- Avoid word clouds!
- Hard to tell the "area" taken up by a word

Avoid Jiggling Baseline

- Stacked bar charts / histograms hard to read because baseline moves
- Notice that top bars are all about the same height

Avoid Jiggling Baseline

 Stacked area charts hard to read because baseline moves

Avoid Jiggling Baseline

 Instead, plot lines themselves

Principles of Transformation

Transforming Data Can Reveal Patterns

When data are heavy tailed, useful to take the log and replot

Transforming Data Can Reveal Patterns

- Shows a mode when log(fare) = 2 and a smaller mode at 3.4.
- What do these correspond to in actual dollars?
- $\exp(2) = \$7.4$
- exp(3.4) = \$30

Transforming Data Can Reveal Patterns

Log of nonlinear data can reveal pattern in scatter plot!

Log of y-values

• Fit line to log of y-values:

$$\log y = ax + b$$
$$y = e^{ax+b}$$
$$y = e^{ax}e^{b}$$
$$y = Ce^{ax}$$

 Linear relationship after log of yvalues implies exponential model for original plot

Log of both x and y-values

• Fit line to log of x and y-values:

$$\log y = a \cdot \log x + b$$
$$y = e^{a \cdot \log x + b}$$
$$y = Ce^{a \cdot \log x}$$
$$y = Cx^a$$

 Linear relationship after log of x and yvalues implies polynomial model for original plot

log(healthcare)

Principles of Context

The gender gap is transitory - even for extreme cases

Percentage of Bachelors conferred to women from 1970 to 2011 in the US for extreme cases where the percentage was less than 20% in 1970

Add Context Directly to Plot

A publication-ready plot needs:

- Informative title (takeaway, not description)
 - "Older passengers spend more on plane tickets" instead of "Scatter plot of price vs. age".
- Axis labels
- Reference lines and markers for important values
- Labels for unusual points
- Captions that describe data

Principles of Smoothing

Apply Smoothing for Large Datasets

A Histogram is a Smoothed Rug Plot

Smoothing Needs Tuning

Kernel Density Estimation (KDE)

- Sophisticated smoothing technique
- Used to estimate a probability density function from a set of data

Intuition:

 Place a "kernel" at each data point

Intuition:

- Place a "kernel" at each data point
- 2. Normalize kernels so that total area = 1

Intuition:

- Place a "kernel" at each data point
- 2. Normalize kernels so that total area = 1
- 3. Sum all kernels together

Gaussian kernel most common (default for seaborn).

Changing width of each kernel = changing bandwidth

Narrow bandwidth is analogous to narrow bins for histogram

KDE Example — Uniform Kernel

Uniform kernel with bandwidth of 2. Data points at:

Kernel at each x: x = [1, 2, 5, 8]

KDE Example — Uniform Kernel

Scale each kernel by 1/4 since there are four points:

KDE Example — Uniform Kernel

Add kernels together:

Height at 1.5? 0.5

Summary

- When choosing a visualization, consider the principles of Scale,
 Conditioning, Perception, Transformation, Context, and Smoothing!
- In general: show the data!
 - Maximize data-ink ratio: cut out everything that isn't data-related