CMPT 733 Vis for Data Science

Instructor

Steven Bergner

Course website

https://sfu-db.github.io/bigdata-cmpt733/

Outline

- Visualization: What, Why, and How?
- Examples and goals
- Guidelines and Techniques

Recap: Data Science Pipeline

What	When	Who	Goal
Computer Science	1950-	Software Engineer	Write software to make computers work

Plan → Design → Develop → Test → Deploy → Maintain

What	When	Who	Goal
Data Science	2010-	Data Scientist	Extract insights from data to answer questions

Collect→ Clean → Integrate → Analyze → Visualize → Communicate

What role does Visualization play?

vi-su-al-ize

- 1. To form a mental image
- 2. To make visible

What is Data Visualization?

Visualization: To convey information through visual representations

Computer Readable

Human Readable

0 22.0

1 38.0

2 26.0

... ..

888 NaN

889 26.0

890 32.0

"Looks like older people didn't spend more than younger people."

"Looks like older people didn't spend more than younger people."

"Looks like older people didn't spend more than younger people."

X	У	X	У	X	у
10.0	8.04	10.0	9.14	10.0	7.46
8.0	6.95	8.0	8.14	8.0	6.77
13.0	7.58	13.0	8.74	13.0	12.74
9.0	8.81	9.0	8.77	9.0	7.11
11.0	8.33	11.0	9.26	11.0	7.81
14.0	9.96	14.0	8.10	14.0	8.84
6.0	7.24	6.0	6.13	6.0	6.08
4.0	4.26	4.0	3.10	4.0	5.39
12.0	10.84	12.0	9.13	12.0	8.15
7.0	4.82	7.0	7.26	7.0	6.42
5.0	5.68	5.0	4.74	5.0	5.73

Human eyes good at seeing visual patterns!

Human eyes good at seeing visual patterns!...

Sometimes.

Why Data Visualization?

- One goal of data science is to inform human decisions
 - Excellent plots directly address this goal
 - Sometimes the most useful results from data analysis are the visualizations!
- Data viz is not as simple as calling plot()
 - Many plots possible, but only a few are useful
 - Every visualization has tradeoffs

Python example: seaborn

Demo/Tutorial: https://seaborn.pydata.org/tutorial.html

seaborn

Best used with tidy (aka long-form) data

Seaborn will perform groupby automatically

Typical usage:

```
sns.someplot(x='...', y='...', data=...)
```


Plot types

- Dot plot, Rug plot
- Jitter plot
- Error bar plot
- Box plot
- Histogram
- Kernel density estimate
- Cumulative distribution function

seaborn

sns.barplot(x='sex', y='survived', data=ti)

	survived	class	sex	age	fare
0	0	Third	male	22.0	7.25
1	1	First	female	38.0	71.28
2	1	Third	female	26.0	7.92
888	0	Third	female	NaN	23.45
889	1	First	male	26.0	30.00
890	0	Third	male	32.0	7.75

seaborn

@ 🛈 🕏 🧿

Customizing Plots using matplotlib

Demo/Tutorial: https://matplotlib.org/tutorials/introductory/pyplot.html

matplotlib

- Underlying library for seaborn, pandas, and most other Python plotting libraries
- A Figure contains several Axes. Each Axes contains a plot.
- When creating a plot, a new figure + axes is created if not already initialized.
 - Matplotlib remembers that axes for the duration of the cell (hidden state!)
- Note: Axes = one chart within a larger Figure
 - Axis = x or y-axis within a chart (sorry!)

matplotlib

- 1. Figure
- 2. Axes
- 3. Line
- 4. Title
- 5. YAxis
- 6. XAxis

Typical Workflow

- Start with seaborn plot
 - Get as close to desired result as possible
- Fine-tune with matplotlib, e.g.
 - Changing title, axis labels
 - Annotating interesting points
- Publication-ready plots take lots of fine-tuning!

Common Visualizations for One Quantitative Variable

Histograms

Always have proportion per unit on y-axis

- Total area = 1
- Deciding on number of bins is hard! Trial-anderror process.

Density Plots

Density plots similar to a "smoothed" histogram

Rug plots put a tick at each data point

Used to show all points

Common Visualizations for Two Quantitative Variables

Scatter Plots

Used to reveal relationships between pair of variables

- Susceptible to overplotting
 - Points overlap!

Scatter Plots

Used to inform model choices

 E.g. simple linear model requires linear trend and equal spread.

simple linear

simple nonlinear

unequal spread

complex nonlinear

Hex Plots

- Equivalent of histogram in two dimensions
- Shaded hexagons usually correspond to more points

2D Density Plots

Density plots also work in two dimensions!

Common Visualizations for Qualitative + Quantitative Variable

Bar Plots

- Typically use horizontal bars to avoid label overlap
- Can also plot confidence intervals on bars if appropriate

Point Plots / Dot Plots

- Minimal cousin of the bar plot
- Some prefer point plots since the bar widths in a bar plot have no meaning

Box Plots

- Used to compare distributions
- Uses quartiles
 - Q1: 25th percentile
 - Q2 (median): 50th
 - Q3: 75th
- Middle line = median
- Box shows 1st and 3rd quartile
- Whiskers show rest of data
- Outliers = 1.5 * (Q3 Q1) past Q1 or Q3

Box Plots

- Outliers plotted beyond whiskers
- Interquartile range IQR = Q3 Q1
- Outliers are defined as:
 - 1.5 * IQR beyond Q1 or Q3
- Example for male ages:
 - Q1 = 21; Q2 = 29; Q3 = 39
 - IQR = 18; 1.5*IQR = 27
 - Outliers are:
 - Above Q3 + 1.5*IQR = 66
 - Below Q1 1.5*IQR = -6

Summary

- Data visualization is underappreciated!
- Use seaborn + matplotlib
 - Pandas also has basic built-in plotting methods
- Types of variables constrain the charts you can make
 - Single quantitative: histogram, density plot
 - 2+ quantitative: scatter plot, 2D density plot
 - Quantitative + qualitative: bar plot, point plot, box plot

Visualization Goals

Map

Konya town map, Turkey, c. 6200 BC

Anaximader's Map of the World

Anaximander of Miletus, c. 550 BC

Map

Planetary Movement Diagram, c. 950

Halley's Wind Map, 1686

Record

Leonardo Da Vinci, ca. 1500

William Curtis (1746-1799)

Galileo Galilei, 1616

Record

E. J. Muybridge, 1878

Abstract

The Upright divisions are I'm Thousand Sounds each. The Black Lines are Experts the Ribballins Imports.

Mid suppressions. Endin.

W. Playfair, 1786

F. Nightingale, 1856

Abstract

2012 PRESIDENTIAL RUN GOP CANDIDATES BACK PALIN 70% 63% 60% BACK ROMNEY BACK HUCKABEE SOURCE:OPINIONS DYNAMIC

W. Playfair, 1801

Abstract

Discover

John Snow, 1854

Discover

C.J. Minard, 1869

Clarify

Clarify

Interact

Interact

M. Wattenberg, 2005

Interact

A Peek Into Netflix Queues

Examine Netflix rental patterns, neighborhood by neighborhood, in a dozen cities. Some titles with distinct patterns are Mad Men, Obsessed and Last Chance Harvey.

Comments (131)

Communicate

"Many Eyes", M. Wattenberg 2007

Communicate

How Different Groups Spend Their Day

The American Time Use Survey asks thousands of American residents to recall every minute of a day. Here is how people over age 15 spent their time in 2008. Related article

Inspire / Tell a Story

Hans Rosling, TED 2006

Visualization

To convey information through visual representations

Map

Record

Abstract

Discover

Clarify

Interact

Communicate

Inspire

Goals

- Insight and analysis
 - Extract the information content
 - Make things and relationships visible
 - Analyze the data by means of the visual representation
- Communication
 - Allow the non-expert to understand
 - Guide the expert into the right direction
- Exploration
 - Interactive control
 - Use visual representation to understand the phenomena
- "The purpose of computing is insight not numbers" (Hamming 1962)

Exploratory Data Analysis (EDA)

EDA is the process of doing Descriptive Statistics

- Aim to understand the data
- Data summarization, visualization, etc.

- Professor at Princeton University
- Founding chairman of the Princeton statistics department in 1965
- Worked on EDA at Bell Labs since 60's
- Wrote a book entitled "Exploratory Data Analysis" in 1977

EDA is like detective work

John Tukey:

"Exploratory data analysis is an attitude, a state of flexibility, a willingness to look for those things that we believe are not there, as well as those that we believe to be there."

Why Data Visualization?

- What?
- Why?
- Who?
- How?

Information Explosion / Big Data

"The Industrial Revolution of Data"

Joe Hellerstein, UC Berkeley

Limits of Cognition

Daniel J. Simons and Daniel T. Levin, Failure to detect changes to people during a real world interaction, 1998

"It is things that make us smart."

Donald Norman

"It is things that make us smart."

Donald Norman exultatoc. pe Eruct. iffufa eft gra flabije tuie: ppterea bene dixirte De"feterni. V. Absopter veritate rabiliter Dexteratua. Di 13 Hla. N. Hue maria gratia plea offe tecum:bfidicta tu i mulierib". A lla. Thrao ieffe floruit vir go bei t boiem Ther cominus noftru. L.j. faturnini martyris a fente; a fiftinut viaconi fib maximtano. A quo primo iter altes fer uso et vanmant funt ad fodendam barenas ad faciendas thermas viorterianas, 22 uorus vnum fifinnium fibi prefentarum; cum tuterrogaffet idem maximianus quis weare, tur.respondit: Egopeccato: fifinnus feruus eruorum comini noftriiciu chafti. Lui cus co breulisaut carnes tuas cremabo: refpon dit. Ego quidem femper lox optanti veritta mefi merit fitero cotonà tefideratà accipià. The History of Visual Communication

"It is things that make us smart."

Donald Norman

Visual Thinking Collection, Dave Grey

Mental Queries

Which gender or income level group shows different effects of age on triglyceride levels?

	Males		Females	
Income Group	Under 65	65 or Over	Under 65	65 or Over
0-\$24,999	250	200	375	550
\$25,000+	430	300	700	500

Visual Queries

Why use an external representation?

 Replace cognition with perception

	I		II		III		IV	
	X	У	X	У	X	У	х	у
	10	8,04	10	9,14	10	7,46	8	6,58
	8	6,95	8	8,14	8	6,77	8	5,76
	13	7,58	13	8,74	13	12,74	8	7,71
	9	8,81	9	8,77	9	7,11	8	8,84
	11	8,33	11	9,26	11	7,81	8	8,47
	14	9,96	14	8,1	14	8,84	8	7,04
	6	7,24	6	6,13	6	6,08	8	5,25
	4	4,26	4	3,1	4	5,39	19	12,5
	12	10,84	12	9,13	12	8,15	8	5,56
	7	4,82	7	7,26	7	6,42	8	7,91
	5	5,68	5	4,74	5	5,73	8	6,89
SUM	99,00	82,51	99,00	82,51	99,00	82,50	99,00	82,51
AVG	9,00	7,50	9,00	7,50	9,00	7,50	9,00	7,50
STDEV	3,32	2,03	3,32	2,03	3,32	2,03	3,32	2,03

Why represent all the data?

- Summaries lose information, details matter
 - Confirm expected and find unexpected patterns
 - Assess validity of statistical model

Visualization

- Helps us think
- Reduces load on working memory
- Offloads cognition
- Uses the power of human perception

Defining Visualization (Vis)

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

["Visualization Analysis and Design" by T. Munzner, 2014]

Why have a human in the loop?

- Not needed when automatic solution is trusted
- Good for ill-specified anlaysis problems
 - Common setting: "What questions can we ask?"

Why have a human in the loop?

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

Munzner, T. (2014)

- **Long-term use** Exploratory analysis of scientific data
 - Presentation of known results
- **Short-term use** For **developers** of automatic solutions:
 - Understand requirements for model development
 - Refine/debug and determine parameters
 - For **end users** of automatic solutions: verify, build trust

Analysis framework: four levels

- **Domain** situation: Who are the target users?
- Abstraction: Translate from specifics of domain to vocabulary of vis
- What is shown? Data abstraction
 - Don't just draw what you're given: transform to new
- Why is the user looking at it? *Task abstraction*
- **How** is it shown? *Idiom*
 - Visual encoding idiom: How to draw
 - Interaction idiom: How to manipulate
- Algorithm: efficient computation

Pitfalls

- WTF Visualizations (http://viz.wtf)
- Without **knowing the principles**, you might make a lot of mistakes like this!

Resource limitations

Computational limits

Processing time and system memory

• **Human** limits

- Human attention and memory
- Understanding abstractions

Display limits

- Pixels are precious
- Information density tradeoff: Info encoding vs unused whitespace

Understand Data, Task, and Encoding

Data Types

- Items and attributes as rows and columns of tables
- Position and time are special attributes
- Spatial data on grids makes computation easier

Analyze

→ Search

	Target known	Target unknown			
Location known	·.·· Lookup	:. Browse			
Location unknown	⟨`ฺ⊙ੑ∙> Locate	₹ ⊙ > Explore			

Query

Targets

All Data

Attributes

- Network Data
 - → Topology

- Spatial Data
 - → Shape

Tasks

Actions

- Analyze
- Search
- Query
- Targets
 - Item & Attributes
 - Topology & Shape

Visual Encoding – How?

- Marks
 - Geometric primitives
- Channels
 - Appearance of marks
 - Redundant coding with multiple channels possible

Design Principles for Task Effective Visualization

Expressiveness principle

 Match channel and data characteristics

Effectiveness principle

 Encode important attributes with higher ranked channels

Chart Design: Simplifying

Example from Tim Bray

Chart Design: Simplifying

Example from Tim Bray

Principle 2: Understand Magnitudes

Which one is brighter?

Principle 2: Understand Magnitudes

Which one is longer?

Principle 3: Use Color

- Make your visualization look beautiful
 - Colour Lovers: http://www.colourlovers.com
- Work for different kinds of data

Colormaps

- Choose a color map appropriate for the data type
 - Categorical, ordinal, quantitative
 - Sequential, perceptually uniform
 - Diverging, cyclic, qualitative
- See https://matplotlib.org/3.1.0/tutorials/colors/colormaps.html

```
jet
viridis
```

Principle 4: Use Structure

• Chart chooser: http://labs.juiceanalytics.com

- Galleries (modify for your purposes)
 - https://seaborn.pydata.org/examples/index.html
 - https://observablehq.com/@d3/gallery
 - https://altair-viz.github.io/gallery/

Principle 4: Use Structure

Correlation Visualization

Consider a table with n=4 attributes

Recap: Data Lifecycle

Related Processes

Big Data Journey

Business transformations as a company becomes more data-centric

Data Visualization Process

• Acquire, Parse, Filter, Mine, Represent, Refine, Interact [Ben Fry '07, Visualizing Data]

Data Visualization *Pipeline*

Analyse (Wrangling), Filter, Map to visual properties, Render geometry

Sources

- Tamara Munzner "Visualization Analysis and Design", 2014
- Lau, Gonzalez, Nolan: "Principles and Techniques of Data Science"
- Torsten Möller's Visualization course, Spring 2018
- UC Berkley Data 100 (Lau, Nolan, Dudoit, Perez)