CMPT 733 – Big Data Programming II Responsible Data Science

Instructor Steven Bergner

Course website <u>https://sfu-db.github.io/bigdata-cmpt733/</u>

Slides by: Jiannan Wang

Data scientists have a lot of power

A lot of data <

A lot of data-driven
decisions

A lot of ML/Stats methods

Whether Tom can get admitted by a university

Whether Tom can get an offer from a company

Whether Tom can get a loan from a bank

Whether Tom can express his option on a website

Whether Tom can be treated properly in a hospital

. . .

What is a right decision?

EASY

or

Women less likely to be shown ads for high-paid jobs on Google, study shows

Automated testing and analysis of company's advertising system reveals male job seekers are shown far more adverts for highpaying executive jobs

One experiment showed that Google displayed adverts for a career coaching service for "\$200k+" executive jobs 1,852 times to the male group and only 318 times to the female group. Another experiment, in July 2014, showed a similar trend but was not statistically significant. "

Amazon scraps a secret A.I. recruiting tool that showed bias against women

PUBLISHED WED, OCT 10 2018+6:15 AM EDT | UPDATED THU, OCT 11 2018+2:25 PM EDT

- Amazon.com's machine-learning specialists uncovered a big problem: their new recruiting engine did not like women.
- The team had been building computer programs since 2014 to review job applicants' resumes with the aim of mechanizing the search for top talent, five people familiar with the effort told Reuters.
- The company's experimental hiring tool used artificial intelligence to give job candidates scores ranging from one to five stars — much like shoppers rate products on Amazon, some of the people said.

The New York Times

Many Facial-Recognition Systems Are Biased, Says U.S. Study

Algorithms falsely identified African-American and Asian faces 10 to 100 times more than Caucasian faces, researchers for the National Institute of Standards and Technology found.

By Natasha Singer and Cade Metz

Dec. 19, 2019

Data Science Ethics

Informed Consent Data Ownership Privacy Data Validity Algorithmic Fairness

ata Science Ethics	DS-GA 3001.009: Special
$\star \star \star \star 4.8$ 536 ratings	Topics in Data Science:
H.V. Jagadish	Responsible Data Science

https://www.coursera.org/l earn/data-science-ethics/ https://dataresponsibly.github.io /courses/spring19/

BRIEF HISTORY OF FAIRNESS IN ML

Female and male applicants are treated differently

Admit 40% students to MPCS

How to make my model fair?

How to make my model fair?

Two notions of fairness

Equality Giving everyone <u>the same thing</u>

Equity Giving everyone access to <u>the same opportunity</u>

Toolkits

https://github.com/fairlearn/fairlearn

https://github.com/Trusted-AI/AIF360

https://github.com/tensorflow/fairness-indicators

AIF360 <u>https://github.com/Trusted-AI/AIF360</u>

Datasets Toolbox

- Fairness metrics (30+)
- Fairness metric explanations
- Bias mitigation algorithms (9+)

Guidance

Industry-specific tutorials

Bias In the Machine Learning Pipeline

Al Faimess by Trisha Mahoney, Kush R. Varshney, and Michael Hind Copyright © 2020 O'Reilly Media. All rights reserved.

AIF360 Algorithms

Pre-processing

- Reweighing
- Disparate Impact Remover
- Learning Fair Representations
- Optimized Preprocessing

In-processing

- Calibrated Equality of Odds
- Equality of Odds
- Reject Option Classification

Post-processing

- ART Classifier
- Prejudice Remover
- Post-processing

Reweighting

Modify the weights of different training examples such that

P(admit | Sex = 'Female')

P(admit | Sex = 'Male')

Sex	Ethnicity	Highest degree	Job type	Class
Μ	Native	H. school	Board	+
Μ	Native	Univ.	Board	+
Μ	Native	H. school	Board	+
Μ	Non-nat.	H. school	Healthcare	+
Μ	Non-nat.	Univ.	Healthcare	_
F	Non-nat.	Univ.	Education	—
F	Native	H. school	Education	_
F	Native	None	Healthcare	+
F	Non-nat.	Univ.	Education	_
F	Native	H. school	Board	+

Reweighting

Algorithm 3: Reweighing

Input: (D, S, Class)Output: Classifier learned on reweighed D1: for $s \in \{F,M\}$ do 2: for $c \in \{-, +\}$ do 3: Let $W(s, c) := \frac{|\{X \in D \mid X(S) = s\}| \times |\{X \in D \mid X(Class) = c\}|}{|D| \times |\{X \in D \mid X(Class) = c \text{ and } X(S) = s\}|}$ 4: end for 5: end for 6: $D_W := \{\}$ 7: for X in D do 8: Add (X, W(X(S), X(Class))) to D_W 9: end for 10: Train a classifier C on training set D_W , taking onto account the weights 11: return Classifier C

F. Kamiran and T. Calders, "Data Preprocessing Techniques for Classification without Discrimination," Knowledge and Information Systems, 2012 (<u>https://link.springer.com/content/pdf/10.1007%2Fs10115-011-0463-8.pdf</u>)

Reweighting - Example

Sex	Ethnicity	Highest degree	Job type	Cl.	Weight
Μ	Native	H. school	Board	+	0.75
Μ	Native	Univ.	Board	+	0.75
Μ	Native	H. school	Board	+	0.75
Μ	Non-nat.	H. school	Healthcare	+	0.75
Μ	Non-nat.	Univ.	Healthcare	_	2
F	Non-nat.	Univ.	Education	-	0.67
F	Native	H. school	Education	_	0.67
F	Native	None	Healthcare	+	1.5
F	Non-nat.	Univ.	Education	-	0.67
F	Native	H. school	Board	+	1.5

$$\frac{5\times 6}{10\times 4} = 0.75$$

$$\frac{5 \times 4}{10 \times 1} = 2$$
$$\frac{5 \times 4}{5 \times 4} = 0.67$$

$$10 \times 3$$
 5×6 -15

$$\frac{3\times 0}{10\times 2} = 1.5$$

Impact of AI

on data science, engineering, and humanity.

How are our brains going to change?

• Al already has profound impact on how we live and work

• Al to generate ideas

- Instead of relying on intuition and imagination
- Blur the line between human and machine creativity
- Shift in skills and abilities, put higher value on
 - Critical thinking
 - Judgment
 - Taste

Impact of AI on Data Science

- Automate many data-related tasks such as data cleaning, data preprocessing, feature selection, and even model selection
- Discover patterns and relationships that are not immediately apparent in large datasets
- More accurate and efficient predictive models
- Personalized and interactive data products
- Raises important ethical and social issues related to data privacy, bias, and fairness

Al Data Management & Eval

<u>https://zenoml.com/docs/demos</u>

Steven Bergner - CMPT 733

Conclusion

- **Big Picture**
- Why responsible data science?
- Data science ethics

Fairness

- Equality vs Equity
- AIF360

Reweighting

or

