
CMPT 733 – Big Data Programming II

Deep Learning II

Instructor Steven Bergner

Course website https://sfu-db.github.io/bigdata-cmpt733/

Slides by: Steven Bergner

https://sfu-db.github.io/bigdata-cmpt733/

Overview

l Recap: Overfitting remedies

l Deep learning for sequences

l Natural language processing, e.g.
- Sentiment analysis

- Word embeddings

l Visualization for Deep Learning

Strategies against Overfitting
(short recap)

Dropout
l Random sample of

connection weights is
set to zero

l Train different network
model each time

l Learn more robust,
generalizable features

[Goodfellow, Bengio, Courville 2016]

Multitask learning
l Shared parameters are

trained with more data

l Improved generalization
error due to increased
statistical strength

l Missing components of y are
masked from the loss
function

[Goodfellow, Bengio, Courville 2016]

Types of connectivity

[Goodfellow, Bengio, Courville 2016]

Convolution calculation illustrated

Choosing architecture family
l No structure → fully connected

l Spatial structure → convolutional

l Sequential structure → recurrent

Optimization Algorithm
l Lots of variants address choice of learning rate

l See Visualization of Algorithms

l AdaDelta and RMSprop often work well

http://ruder.io/optimizing-gradient-descent/index.html

Gradient Clipping
l Add learning rate time gradient to update parameters

l Believe direction of gradient, but not its magnitude

[Goodfellow, Bengio, Courville 2016]

Development strategy
l Identify needs: High accuracy or low accuracy?
l Choose metric

- Accuracy (% of examples correct), Coverage (% examples processed)
- Precision TP/(TP+FP), Recall TP/(TP+FN)
- Amount of error in case of regression

l Build end-to-end system
- Start from baseline, e.g. initialize with pre-trained network

l Refine driven by data

Software for Deep Learning

Current Frameworks
l Tensorflow / Keras

l PyTorch

l DL4J

l Caffe (superseded by Caffe2, which is merged into PyTorch)

l And many more

l Most have CPU-only mode but much faster on NVIDIA GPU

https://www.tensorflow.org/tutorials
https://pytorch.org/tutorials/
https://en.wikipedia.org/wiki/Comparison_of_deep_learning_software

Recap: Choosing architecture family
l No structure → fully connected

l Spatial structure → convolutional

l Adjacency or order of inputs has meaning

l Sequential structure → recurrent

Sequence Modeling
with Recurrent Nets

Classical Dynamical Systems
l Recurrent network models a dynamical system that is

updated in discrete steps over time

l Function f takes input from time t to output at time t+1

l Rules persist across time

[Goodfellow, Bengio, Courville 2016][Goodfellow, Bengio, Courville 2016]

Unfolding Computation Graphs
l Recurrent graph can be unfolded, where hidden state h is

influencing itself

l Backprop through time is just backprop on unfolded graph

[Goodfellow, Bengio, Courville 2016]

Recurrent Hidden Units
l Can have more than

one layer

[Goodfellow, Bengio, Courville 2016]

Sequence Input, Single Output
Example

Sentiment analysis of text

[Goodfellow, Bengio, Courville 2016]

Fully Connected Graphical Model
l Too many dependencies among variables, if each has its own

set of parameters

[Goodfellow, Bengio, Courville 2016]

RNN Graphical Model
l Organize variables according to time with single update rule

l Finite set of relationships may extend to infinite sequences

l h acts as “memory state” summarizing relevant history

[Goodfellow, Bengio, Courville 2016]

Recurrence only through output
l Avoid backprop through

time

l Mitigation: Teacher forcing
- Use actual or expected output

from the training dataset at
current time y(t) as input o(t)
to the next time step, rather
than generated output

- Backprop stops when it
reaches y(t-1) via o(t-1)

[Goodfellow, Bengio, Courville 2016]

Bidirectional RNN
l Later information may be

used to reassess previous
observations

[Goodfellow, Bengio, Courville 2016]

LSTMs
l Use addition over time instead of multiplication

[Sawatzky, Bergner, Popowich, 2019]

Further Architectures
l Transformers

l Deep Reinforcement Learning

http://jalammar.github.io/illustrated-bert/
https://deepmind.com/blog/article/deep-reinforcement-learning

Karpathy’s NanoGPT
• Excellent explanation of Attention

• NanoGPT implementation https://github.com/karpathy/nanoGPT

https://www.youtube.com/watch?v=kCc8FmEb1nY&t=1s

https://www.youtube.com/redirect?event=video_description&redir_token=QUFFLUhqbVBpbDJKUnVxMnU0WHFRVktlWnJyeURrNWxud3xBQ3Jtc0tteEIxMEJSYkplOVhBYVR3WWJuaENidHVJMU9sb2hkT2VRVUtFemc5RXdYNkxURjlFOV93aENUaFlLcUR3R3ZPSlJMTklwdEpfTXNpT2ZyNTNURjkzVER2YlhIX3k2VW5zSDNhbTZlMDZHRkYwNVloSQ&q=https%3A%2F%2Fgithub.com%2Fkarpathy%2FnanoGPT&v=kCc8FmEb1nY

Generative language models are now
passing exams

Visualization for DL
l Tensorboard: Visualizing Learning
l How to use t-SNE efficiently
l UMap

Model visualization
l LSTM-Vis: http://lstm.seas.harvard.edu/client/index.html
l Video demo

l Building blocks of interpretability

https://www.tensorflow.org/tensorboard
https://distill.pub/2016/misread-tsne/
https://umap-learn.readthedocs.io/en/latest/interactive_viz.html
http://lstm.seas.harvard.edu/client/index.html
https://youtu.be/JTXo1QzHnRg?t=1874
https://distill.pub/2018/building-blocks/

Sources
l I. Goodfellow, Y. Bengio, A. Courville “Deep Learning” MIT

Press 2016 [link]

l Zhang et al. “Dive into Deep Learning” [link]

http://www.deeplearningbook.org/
https://d2l.ai/

